MuyGPyS

Release beta

Benjamin W. Priest

May 03, 2024

PACKAGE DOCUMENTATION:

1 Citation 3
1.1 neighbors o o e e e e e e e e 3
L2 gD o o e 5
1.3 optimize e e e e e 33
L4 examples e e e e e e e e e e e e e e 44
LS5 torch 68
1.6 Univariate Regression Tutorial L o 69
1.7 Tlustrating MuyGPs Sparsification, Prediction, and Uncertainty Quantification 78
1.8 Deep Kernels with MuyGPs in PyTorch Tutorial 84
1.9 Fast Posterior Mean Tutorial e 90
1.10 Anisotropic Metric Tutorial e e e e e e 96
I.11 Loss Function Tutorial e 105
1.12 References o o e e e e e e e e e 119
2 Indices and tables 121
Bibliography 123
Python Module Index 125
Index 127

MuyGPyS, Release beta

MuyGPyS is toolkit for training approximate Gaussian Process (GP) models using the MuyGPs (Muyskens, Goumiri,
Priest, Schneider) algorithm.

PACKAGE DOCUMENTATION: 1

MuyGPyS, Release beta

2 PACKAGE DOCUMENTATION:

CHAPTER
ONE

CITATION

If you use MuyGPyS in a research paper, please reference our article:

@article{muygps2021,

title={MuyGPs: Scalable Gaussian Process Hyperparameter Estimation Using Local Cross-
—Validation},

author={Muyskens, Amanda and Priest, Benjamin W. and Goumiri, Im{\ e}ne and Schneider,..
—Michael},

journal={arXiv preprint arXiv:2104.14581},

year={2021}
}

1.1 neighbors

KNN lookup management

MuyGPyS.neighbors.NN_Wrapper is an api for tasking several KNN libraries with the construction of lookup indexes
that empower fast training and inference. The wrapper constructor expects the training features, the number of nearest
neighbors, and a method string specifying which algorithm to use, as well as any additional kwargs used by the methods.
Currently supported implementations include exact KNN using sklearn (“exact”) and approximate KNN using hnsw
(“hnsw”).

class MuyGPyS.neighbors.NN_Wrapper (train, nn_count, nn_method='exact', **kwargs)

Nearest Neighbors lookup datastructure wrapper.

Wraps the logic driving nearest neighbor data structure training and querying. Currently supports sklearn.
neighbors.NearestNeighbors for exact computation and hnswlib.Index for approximate nearest neigh-
bors.

An example constructing exact and approximate KNN data lookups with k = 10.

Example

>>> from MuyGPyS.neighors import NN_Wrapper

>>> train_features = load_train_features()

>>> nn_count = 10

>>> exact_nbrs_lookup = NN_Wrapper (

c train_features, nn_count, nn_method="exact", algorithm="ball_tree"
cee)
>>> approx_nbrs_lookup = NN_Wrapper(

(continues on next page)

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html
https://github.com/nmslib/hnswlib

MuyGPyS, Release beta

(continued from previous page)

train_features, nn_count, nn_method="hnsw", space="12", M=16

Parameters

* train (ndarray) — The full training data of shape (train_count, feature_count) that
will construct the nearest neighbor query datastructure.

* nn_count (int) — The number of nearest neighbors to return in queries.

* nn_method (str) — Indicates which nearest neighbor algorithm should be used. Cur-
rently “exact” indicates sklearn.neighbors.NearestNeighbors, while “hnsw” indi-
cates hnswlib. Index (requires installing MuyGPyS with the “hnswlib” extras flag).

* kwargs — Additional kwargs used for lookup data structure construction. nn_method=

"exact" supports “radius”, “algorithm”, “leaf_size”, “metric”, “p”, “metric_params”, and
2% &6

“n_jobs” kwargs. nn_method="hnsw" supports “space”, “ef_construction”, “M”, and “ran-
dom_seed” kwargs.

get_batch_nns (batch_indices)
Get the non-self nearest neighbors for indices into the training data.

Find the nearest neighbors and associated distances for each specified index into the training data.

Example

>>> from MuyGPyS.neighbors import NN_Wrapper
>>> from numpy.random import choice
>>> train_features = load_train_features()
>>> nn_count = 10
>>> nbrs_lookup = NN_Wrapper(
train_features, nn_count, nn_method="exact", algorithm="ball_tree"
cen)
>>> train_count, _ = train_features.shape
>>> batch_count = 50
>>> batch_indices = choice(train_count, batch_count, replace=False)
>>> nn_indices, nn_dists = nbrs_lookup.get_nns(batch_indices)

Parameters
batch_indices (ndarray) — Indices into the training data of shape (batch_count,).

Return type
Tuple[ndarray, ndarray]

Returns

* batch_nn_indices — Matrix of nearest neighbor indices of shape (batch_count,
nn_count). Each row lists the nearest neighbor indices (self excluded) of the correspond-
ing batch element.

* batch_nn_dists (numpy.ndarray(int), shape=(batch_count, nn_count)) — Matrix of dis-
tances of shape (batch_count, nn_count). Each row lists the distance to the batch
element of the corresponding element in batch_nn_indices.

4 Chapter 1. Citation

MuyGPyS, Release beta

get_nns(rest)
Get the nearest neighbors for each row of test dataset.

Find the nearest neighbors and associated distances for each element of the given test dataset. Here we
assume that the test dataset is distinct from the train dataset used in the construction of the nearest neighbor
lookup data structure.

Example

>>> from MuyGPyS.neighbors import NN_Wrapper

>>> train_features = load_train_features()

>>> test_features = load_test_features()

>>> nn_count = 10

>>> nbrs_lookup = NN_Wrapper

train_features, nn_count, nn_method="exact", algorithm="ball_tree"

-)

>>> nn_indices, nn_dists = nbrs_lookup.get_nns(test_features)

Parameters
test (ndarray) — Testing data matrix of shape (test_count, feature_count).

Return type
Tuple[ndarray, ndarray]

Returns

* nn_indices — Matrix of nearest neighbor indices of shape (test_count, nn_count).
Each row lists the nearest neighbor indices of the corresponding test element.

* nn_dists — Matrix of distances of shape (test_count, nn_count). Each row lists the
distance to the test element of the corresponding element in nn_indices.

1.2 gp

MuyGPyS.gp module reference.

1.2.1 deformation

MuyGPyS.gp.deformation module reference.

class MuyGPyS.gp.deformation.Isotropy (metric, length_scale)
An isotropic deformation model.

Isotropy defines a scaled elementwise distance function d.ll(-,-), and is paramterized by a scalar £ > 0 length
scale hyperparameter.

d
d(x;,y;
d(x,y) =) %
i=0
Parameters

* metric (MetricFn)— A MetricFn object defining the behavior of the feature metric space.

* length_scale (Parameter) — Some scalar nonnegative hyperparameter object.

1.2. gp 5

MuyGPyS, Release beta

__call__(dists, length_scale=None, **kwargs)

Apply isotropic deformation to an elementwise difference tensor.

This function is not intended to be invoked directly by a user. It is instead functionally incorporated into
some MuyGPyS.gp.kernels.KernelFn in its constructor.

Parameters
¢ dists (ndarray) — A tensor of distances between sets of observables.
¢ length_scale (Union[float, ndarray, None]) — A floating point length scale.

Return type
ndarray

Returns
A scaled distance matrix of the same shape as shape (data_count, nn_count) or a pair-
wise distance tensor of shape (data_count, nn_count, nn_count) whose last two di-
mensions are pairwise distance matrices.

crosswise_tensor (data, nn_data, data_indices, nn_indices, **kwargs)
Compute a crosswise distance tensor between data and their nearest neighbors.
Takes full datasets of records of interest data and neighbor candidates nn_data and produces a scalar

distance between each element of data indicated by data_indices and each of the nearest neighbors in
nn_data as indicated by the corresponding rows of nn_indices. data and nn_data can refer to the same

dataset.
Parameters

* data (ndarray)— The data matrix of shape (data_count, feature_count) containing
batch elements.

e nn_data (ndarray) — The data matrix of shape (candidate_count, feature_count)
containing the universe of candidate neighbors for the batch elements. Might be the same
as data.

* indices — An integral vector of shape (batch_count,) containing the indices of the
batch.

e nn_indices (ndarray) — An integral matrix of shape (batch_count, nn_count) listing the
nearest neighbor indices for the batch of data points.

Return type
ndarray
Returns

A tensor of shape (batch_count, nn_count) whose second dimension indicates distance
vectors between each batch element and its nearest neighbors.

pairwise_tensor (data, nn_indices, **kwargs)

Compute a pairwise distance tensor among sets of nearest neighbors.

Takes a full dataset of records of interest data and produces the pairwise distances between the elements
indicated by each row of nn_indices.

Parameters

* data (ndarray) — The data matrix of shape (batch_count, feature_count) contain-
ing batch elements.

e nn_indices (ndarray) — An integral matrix of shape (batch_count, nn_count) listing the
nearest neighbor indices for the batch of data points.

6 Chapter 1. Citation

MuyGPyS, Release beta

Return type
ndarray

Returns
A tensor of shape (batch_count, nn_count, nn_count) containing the (nn_count,
nn_count)-shaped pairwise nearest neighbor distance tensors corresponding to each of the
batch elements.
class MuyGPyS.gp.deformation.Anisotropy (metric, length_scale)
An anisotropic deformation model.

Anisotropy parameterizes a scaled elementwise distance function dy(-, -), and is paramterized by a vector-valued
¢ > 0 length scale hyperparameter.

d
d(x;,y;
d@(X,y) = § (Zy)
i=0 v

Parameters
* metric (MetricFn)— A MetricFn object defining the behavior of the feature metric space.

* length_scales — Keyword arguments length_scale#, mapping to scalar hyperparame-
ters.
__call__(dists, **length_scales)
Apply anisotropic deformation to an elementwise difference tensor.

This function is not intended to be invoked directly by a user. It is instead functionally incorporated into
some MuyGPyS.gp.kernels.KernelFn in its constructor.

Parameters

» dists (ndarray) — A tensor of pairwise differences of shape (..., feature_count)
representing the difference in feature dimensions between sets of observables.

¢ batch_features — A (batch_count, feature_count) matrix of features to be used
with a hierarchical hyperparameter. None otherwise.

* length_scale — A floating point length scale, or a vector of (knot_count,) knot length
scales.

Return type
ndarray

Returns
A crosswise distance matrix of shape (data_count, nn_count) or a pairwise distance ten-
sor of shape (data_count, nn_count, nn_count) whose last two dimensions are pair-
wise distance matrices.

crosswise_tensor (data, nn_data, data_indices, nn_indices, **kwargs)
Compute a crosswise difference tensor between data and their nearest neighbors.
Takes full datasets of records of interest data and neighbor candidates nn_data and produces a difference
vector between each element of data indicated by data_indices and each of the nearest neighbors in

nn_data as indicated by the corresponding rows of nn_indices. data and nn_data can refer to the
same dataset.

Parameters

¢ data (ndarray) - The data matrix of shape (data_count, feature_count) containing
batch elements.

1.2. gp 7

MuyGPyS, Release beta

e nn_data (ndarray) — The data matrix of shape (candidate_count, feature_count)
containing the universe of candidate neighbors for the batch elements. Might be the same
as data.

e indices — An integral vector of shape (batch_count,) containing the indices of the
batch.

e nn_indices (ndarray) — An integral matrix of shape (batch_count, nn_count) listing the
nearest neighbor indices for the batch of data points.

Return type
ndarray

Returns
A tensor of shape (batch_count, nn_count, feature_count) whose last two dimen-
sions indicate difference vectors between the feature dimensions of each batch element and
those of its nearest neighbors.

pairwise_tensor (data, nn_indices, **kwargs)

Compute a pairwise difference tensor among sets of nearest neighbors.

Takes a full dataset of records of interest data and produces the pairwise differences for each feature
dimension between the elements indicated by each row of nn_indices.

Parameters

* data (ndarray) — The data matrix of shape (batch_count, feature_count) contain-
ing batch elements.

e nn_indices (ndarray) — An integral matrix of shape (batch_count, nn_count) listing the
nearest neighbor indices for the batch of data points.

Return type
ndarray

Returns
A tensor of shape (batch_count, nn_count, nn_count, feature_count) containing
the (nn_count, nn_count, feature_count)-shaped pairwise nearest neighbor differ-
ence tensors corresponding to each of the batch elements.

1.2.2 tensors

Tensor functions
Compute special tensors for the purposes of kernel construction.

MuyGPyS.gp.tensors.batch_features_tensor (features, batch_indices)
Compute a tensor of feature vectors for each batch element.

Parameters

» features (ndarray) — The full floating point training or testing data matrix of shape
(train_count, feature_count) or (test_count, feature_count).

* batch_indices (ndarray) — A vector of integers of shape (batch_count,) identifying
the training batch of observations to be approximated.

Return type
ndarray

8 Chapter 1. Citation

MuyGPyS, Release beta

Returns
A tensor of shape (batch_count, feature_count) containing the feature vectors for each
batch element.

MuyGPyS.gp.tensors. fast_nn_update (frain_nn_indices)

Modify the nearest neighbor indices of the training data to include self.

This function is only intended for use in concert with :func:~MuyGPyS.gp.tensors.make_fast_predict_tensors
and MuyGPyS. gp.muygps.MuyGPS. fast_coefficients().

Example
>>> train_nn_indices, _ = nbrs_lookup.get_nns(train_features)
>>> train_nn_indices = fast_nn_update(train_nn_indices)

>>>

>>>
>>>

>>>
>>>
>>>
>>>
>>>

pairwise_diffs, nn_targets = make_fast_predict_tensors(
train_nn_indices,
train_features,
train_responses,
)
Kin = muygps_fast.kernel(pairwise_diffs)
precomputed_coefficients_matrix = muygps_fast.fast_coefficients(
Kin, nn_targets
)
Late on, once test data is encountered
test_indices = np.arange(test_count)
test_nn_indices, _ = nbrs_lookup.get_nns(test_features)
closest_neighbor = test_nn_indices[:, 0]
closest_set = train_nn_indices[closest_neighbor, :]

Parameters
train_nn_indices (ndarray) — A matrix of integers of shape (train_count, nn_count)
listing the nearest neighbor indices for all observations in the batch.

Return type
ndarray

Returns
An integral matrix of shape (train_count, nn_count) that is similar to the input, but the
most distant neighbor index is removed and the index reference to self has been inserted.

MuyGPyS.gp.tensors.make_fast_predict_tensors(batch_nn_indices, train_features, train_targets)

Create the difference and target tensors for fast posterior mean inference.

Creates pairwise_diffs and batch_nn_targets tensors required by MuyGPyS.gp.muygps.MuyGPS.
fast_posterior_mean().

Parameters

* batch_nn_indices (ndarray) — A matrix of integers of shape (batch_count,
nn_count) listing the nearest neighbor indices for all observations in the batch.

e train_features (ndarray) — The full floating point training data matrix of shape
(train_count, feature_count).

* train_targets (ndarray) — A matrix of shape (train_count, response_count)
whose rows are vector-valued responses for each training element.

1.2. gp

MuyGPyS, Release beta

Return type
Tuple[ndarray, ndarray]
Returns
* pairwise_diffs — A tensor of shape (batch_count, nn_count, nn_count,

feature_count) containing the (nn_count, nn_count, feature_count)-shaped
pairwise nearest neighbor difference tensors corresponding to each of the batch elements.

* batch_nn_targets — Tensor of floats of shape (batch_count, nn_count,
response_count) containing the expected response for each nearest neighbor of
each batch element.

MuyGPyS.gp.tensors.make_heteroscedastic_tensor (measurement_noise, batch_nn_indices)

Create the heteroscedastic noise tensor for nonuniform noise values.

Used to produce the noise tensor needed during batched training and prediction. Creates the noise_tensor
tensor required by heteroscedastic MuyGPs models.

Parameters

* measurement_noise (ndarray)— A matrix of floats of shape (batch_count,) providing
the noise corresponding to the response variable at each input value in the data.

* batch_nn_indices (ndarray) — A matrix of integers of shape (batch_count,
nn_count, nn_count) listing the measurement noise for the nearest neighbors for all ob-
servations in the batch.

Return type
ndarray

Returns
A matrix of floats of shape (batch_count, nn_count) providing the noise corresponding to
the nearest neighbor responses for all observations in the batch.

1.2.3 hyperparameter

MuyGPyS.gp.hyperparameters module reference.

class MuyGPyS.gp.hyperparameter.scalar.Parameter (val, bounds=!fixed")

A MuyGPs kernel or model Hyperparameter. Also called ScalarParam.

Hyperparameters are defined by a value and optimization bounds. Values must be scalar numeric types, and
bounds are either a len == 2 iterable container whose elements are numeric scalars in increasing order, or the
string fixed. If bounds == "fixed" (the default behavior), the hyperparameter value will remain fixed during
optimization. val must remain within the range of the upper and lower bounds, if not fixed.

Parameters

* val (Union[str, float]) — A scalar within the range of the upper and lower bounds (if
given). val can also be the strings "sample" or "log_sample", which will result in ran-
domly sampling a value within the range given by the bounds.

* bounds (Union[str, Tuple[float, float]]) — Iterable container of len 2 containing lower
and upper bounds (in that order), or the string "fixed".

Raises
* ValueError — Any bounds string other than "fixed" will produce an error.

* ValueError — A non-iterable non-string type for bounds will produce an error.

10

Chapter 1. Citation

MuyGPyS, Release beta

* ValueError — A bounds iterable of len other than 2 will produce an error.
* ValueError - Iterable bounds values of non-numeric types will produce an error.
* ValueError — A lower bound that is not less than an upper bound will produce an error.

* ValueError — val == "sample" or val == "log_sample" will produce an error if
self._bounds == "fixed".

» ValueError — Any string other than "sample" or "log_sample" will produce an error.
* ValueError — A val outside of the range specified by self._bounds will produce an error.
—_call__(**kwargs)
Value accessor.

Return type
float

Returns
The current value of the hyperparameter.

fixed (O

Report whether the parameter is fixed, and is to be ignored during optimization.

Return type
bool

Returns
True if fixed, False otherwise.

get_bounds ()

Bounds accessor.

Return type
Tuple[float, float]

Returns
The lower and upper bound tuple.

class MuyGPyS.gp.hyperparameter.tensor.TensorParam(val)
A MuyGPs kernel or model Tensor Hyperparameter.

TensorParam are defined solely by a value, which must be numeric arrays. Currently only used for heteroscedastic
noise.

Parameters
val (ndarray) — A mm.ndarray containing the value of the tensor hyperparameter

_call__O

Value accessor.

Return type
ndarray

Returns
The current value of the tensor hyperparameter.

fixedO

Report whether the parameter is fixed, and is to be ignored during optimization. Always returns True for
tensor hyperparameters.

Return type
bool

1.2. gp 11

MuyGPyS, Release beta

Returns
True.

class MuyGPyS.gp.hyperparameter.scale.ScaleFn(val=1.0, **kwargs)
A o2 covariance scale parameter base functor.

0? is a scaling parameter that one multiplies with the found diagonal variances of a MuyGPyS.gp.muygps.

MuyGPS regression in order to obtain the predicted posterior variance. Trained values assume a number of di-
mensions equal to the number of response dimensions, and correspond to scalar scaling parameters along the
corresponding dimensions.

Parameters
val (float) — A floating point value, if intended to be set manually. Defaults to 1.0.
——call__O
Value accessor.
Return type
ndarray
Returns

The current value of the hyperparameter.

scale_fn(fin)

Modify a function to outer product its output with scale.

Parameters
fn (Callable) — A function.

Return type
Callable

Returns
A function that returns the outer product of the output of fn

property trained: bool

Report whether the value has been set.

Returns
True if trained, False otherwise.

class MuyGPyS.gp.hyperparameter.scale.FixedScale (val=1.0, **kwargs)

A o2 covariance scale parameter.
A Scale parameter with a null optimization method. This parameter is therefore insensitive to optimization.

Parameters
response_count — The integer number of response dimensions.

get_opt_£n(muygps)
Return a function that optimizes the value of the variance scale.

Parameters
muygps — A model to be ignored.

Return type
Callable

Returns
A function that always returns the value of this scale parameter.

12 Chapter 1. Citation

MuyGPyS, Release beta

class MuyGPyS.gp.hyperparameter.scale.AnalyticScale (iteration_count=1, _backend_fn=<function
_analytic_scale_optim>, **kwargs)

An optimizable % covariance scale parameter.
Identical to FixedScale, save that its get_opt_fn method performs an analytic optimization.
Parameters
» response_count — The integer number of response dimensions.
» iteration_count (int) — The number of iterations to run during optimization.

get_opt_£n(mnuygps)
Get a function to optimize the value of the o scale parameter for each response dimension.

We approximate a scalar o2 by way of averaging over the analytic solution from each local kernel. Given
observations X with responses Y, noise model £, and kernel function King(-, -), computes:

1 _
o* = bk %;Y(XN,-)T (King(Xn,, Xn,) +en,) YV(Xn,).

Here N; is the set of nearest neighbor indices of the ¢‘thbatchelement,: math : ‘k is the number of nearest
neighbors and b = | B| is the number of batch elements considered.

Parameters
muygps — The model to used to create and perturb the kernel.

Return type
Callable

Returns
A function with signature (Kin, nn_targets, *args, **kwargs) -> mm.ndarray
that perturbs the (batch_count, nn_count, nn_count) tensor Kin with muygps’s noise
model before solving it against the (batch_count, nn_count, response_count) tensor
nn_targets.

1.2.4 Kkernels

Hyperparameters and kernel functors

Defines kernel functors (inheriting KernelFn) that transform crosswise difference tensors into cross-covariance ma-
trices and pairwise difference matrices into covariance or kernel tensors.

See the following example to initialize an MuyGPyS.gp.kernels.Matern object. Other kernel functors are similar,
but require different hyperparameters.

Example

>>> from MuyGPyS.gp.kernels import Matern
>>> kern = Matern(
smoothness=Parameter("log_sample", (0.1, 2.5)),
deformation=Isotropy(
metric=12,
length_scale=Parameter(1.0),

)1

1.2. gp 13

MuyGPyS, Release beta

One uses a previously computed pairwise_diffs tensor (see MuyGPyS.gp. tensor.pairwise_tensor()) to compute
a kernel tensor whose second two dimensions contain square kernel matrices. Similarly, one uses a previously computed
crosswise_diffs matrix (see MuyGPyS.gp.tensor.crosswise_diffs()) to compute a cross-covariance matrix. See
the following example, which assumes that you have already constructed the difference numpy.ndarrays and the kernel
kern as shown above.

Example

>>> Kin = kern(pairwise_diffs)
>>> Kcross = kern(crosswise_diffs)

class MuyGPyS.gp.kernels.kernel_fn.KernelFn(deformation)

Bases: object
A kernel functor.
Base class for kernel functors that include a hyperparameter Dict and a call mechanism.

Parameters
kwargs — Ignored (by this base class) keyword arguments.
__call__(diffs, **kwargs)
Call self as a function.
Return type
ndarray
get_opt_params()
Report lists of unfixed hyperparameter names, values, and bounds.

Return type
Tuple[List[str], List[float], List[Tuple[float, float]]]

Returns

names:
A list of unfixed hyperparameter names.

params:
A list of unfixed hyperparameter values.

bounds:
A list of unfixed hyperparameter bound tuples.

set_params (**kwargs)

Reset hyperparameters using hyperparameter dict(s).

Parameters
kwargs — Hyperparameter kwargs.

Return type
None

class MuyGPyS.gp.kernels.rbf.RBF (deformation=<MuyGPyS.gp.deformation.isotropy.Isotropy object>,
_backend_fn=<function _rbf_fn>, _backend_ones=<function
fix_type.<locals>.typed_fn.<locals>.fn_wrapper>,
_backend_zeros=<function
fix_type.<locals>.typed_fn.<locals>.fn_wrapper>,
_backend_squeeze=<function squeeze>)

14 Chapter 1. Citation

MuyGPyS, Release beta

The radial basis function (RBF) or squared-exponential kernel.
The RBF kernel includes a parameterized scaled distance function dg(-, -).

The kernel is defined by
Kin(x;,xz;) = exp (—de(z4,25)) -
Typically, d(-, -) is the squared Euclidean distance or second frequency moment of the difference of the operands.

Parameters
deformation (DeformationFn) — The deformation functor to be used. Includes length_scale

hyperparameter information via the MuyGPyS.gp.deformation module

__call__(diffs, **kwargs)
Compute RBF kernel(s) from a difference tensor.

Parameters
diffs (ndarray) — A tensor of pairwise diffs of shape (data_count, nn_count,
nn_count, feature_count) or (data_count, nn_count, feature_count). In the
four dimensional case, it is assumed that the diagonals dists diffs[i, j, j, :] == 0.

Return type
ndarray

Returns
A cross-covariance matrix of shape (data_count, nn_count) or a tensor of shape
(data_count, nn_count, nn_count) whose last two dimensions are kernel matrices.

get_opt_fnQ
Return a kernel function with fixed parameters set.

Assumes that optimization parameter literals will be passed as keyword arguments.

Return type
Callable

Returns
A function implementing the kernel where all fixed parameters are set. The function expects

keyword arguments corresponding to current hyperparameter values for unfixed parameters.

class MuyGPyS.gp.kernels.matern.Matern(smoothness=<MuyGPyS.gp.hyperparameter.scalar.Parameter
object>,
deformation=<MuyGPyS.gp.deformation.isotropy.Isotropy
object>, _backend_ones=<function
fix_type.<locals>.typed_fn.<locals>.fn_wrapper>,
_backend_zeros=<function
fix_type.<locals>.typed_fn.<locals>.fn_wrapper>,
_backend_squeeze=<function squeeze>, **_backend_fns)

The Matérn kernel.

The Matern kernel includes a parameterized deformation model dy(-, -) and an additional smoothness parameter
v > 0. v is proportional to the smoothness of the resulting function. As v — oo, the kernel becomes equivalent
to the RBF kernel. When v = 1/2, the Matérn kernel is identical to the absolute exponential kernel. Important
intermediate values are ¥ = 1.5 (once differentiable functions) and v = 2.5 (twice differentiable functions).

The kernel is defined by

k(x;, x;) = W <\/Z27dg(xi,xj)> Kin, <\/Z27d(:ci,xj)>,

1.2. gp 15

MuyGPyS, Release beta

where Kin, (-) is a modified Bessel function and T'(+) is the gamma function. Typically, d(-, -) is the Euclidean
distance or /> norm of the difference of the operands.

Parameters

» smoothness (Parameter) — A parameter determining the differentiability of the function
distribution.

e deformation (DeformationFn) — The deformation functor to be used. Includes
length_scale hyperparameter information via the MuyGPyS . gp.deformation module.

—_call__(diffs, **kwargs)
Compute Matern kernels from distance tensor.
Takes inspiration from scikit-learn’s implementation.

Parameters
diffs — A tensor of pairwise differences of shape (data_count, nn_count, nn_count,
feature_count). It is assumed that the vectors along the diagonals diffs[i, j, j, :] == 0.

Returns
A cross-covariance matrix of shape (data_count, nn_count) or a tensor of shape
(data_count, nn_count, nn_count) whose last two dimensions are kernel matrices.

get_opt_fnQ
Return a kernel function with fixed parameters set.

Assumes that optimization parameter literals will be passed as keyword arguments.

Return type
Callable

Returns
A function implementing the kernel where all fixed parameters are set. The function expects
keyword arguments corresponding to current hyperparameter values for unfixed parameters.

get_opt_params()
Report lists of unfixed hyperparameter names, values, and bounds.

Return type
Tuple[List[str], List[float], List[Tuple[float, float]]]

Returns

names:
A list of unfixed hyperparameter names.

params:
A list of unfixed hyperparameter values.

bounds:
A list of unfixed hyperparameter bound tuples.

16 Chapter 1. Citation

https://github.com/scikit-learn/scikit-learn/blob/95119c13a/sklearn/gaussian_process/kernels.py#L1529

MuyGPyS, Release beta

1.2.5 metric

Metric Function Handling

MuyGPyS includes predefined metric functions with convenience functions for interacting with the rest of the library.

MuyGPyS.gp.deformation.metric.F2 = <MuyGPyS.gp.deformation.metric.MetricFn object>

F2 or squared Euclidean metric function.

Computes the Euclidean distance between points:

n

dF2 (Xv Y) = Z(ml - y7)2

i=1
Parameters

dists — A difference tensor of shape (..., feature_count).

Returns
A distance tensor of shape (. ..).

class MuyGPyS.gp.deformation.metric.MetricFn(differences_metric_fn, crosswise_differences_fn,

pairwise_diffferences_jn, apply_length_scale_fn)
Metric functor class.

MuyGPyS-compatible metric functions are objects of this class. Creating a new metric function is as simple as
instantiating a new MetricFn object with the desired behavior.

Parameters

» differences_metric_fn (Callable) — A Callable taking an ndarray of feature-wise di-
mensional comparisons with shape (..., feature_count) that collapses the last dimen-
sion into scalar distances.

» crosswise_distances_fn - A Callable of signature (data, nn_data,
data_indices, nn_indices) -> distances that produces a crosswise distance
tensor between data and their nearest neighbors.

» crosswise_differences_£fn (Callable) — A Callable of signature (data, nn_data,
data_indices, nn_indices) -> differences thatproduces a feature dimension-wise
crosswise differences tensor between data and their nearest neighbors.

e pairwise_distances_fn - A Callable of signature (data, nn_indices) ->
distances that produces a pairwise distance tensor among sets of nearest neighbors.

» pairwise_differences_fn - A Callable of signature (data, nn_data) ->
differences that produces a feature dimension-wise pairwise differences tensor
among sets of nearest neighbors.

* apply_length_scale_fn (Callable)— A Callable of signature (dists) -> dists that
applies a length scale parameter appropriately to a distances tensor.

apply_length_scale(dists, length_scale)
Compute a pairwise distance tensor among sets of nearest neighbors.

Takes a full dataset of records of interest data and produces the pairwise distances between the elements
indicated by each row of nn_indices.

Parameters
dists (ndarray) — A distance tensor of any shape.

Return type
ndarray

1.2

ap 17

MuyGPyS, Release beta

Returns
A tensor of the same shape that has been element-wise scaled by the provided length scale as
befits the metric.

crosswise_differences(data, nn_data, data_indices, nn_indices, **kwargs)

Compute a crosswise difference tensor between data and their nearest neighbors.

Takes full datasets of records of interest data and neighbor candidates nn_data and produces a difference
vector between each element of data indicated by data_indices and each of the nearest neighbors in
nn_data as indicated by the corresponding rows of nn_indices. data and nn_data can refer to the
same dataset.

Parameters

* data (ndarray)— The data matrix of shape (data_count, feature_count) containing
batch elements.

¢ nn_data (ndarray) — The data matrix of shape (candidate_count, feature_count)
containing the universe of candidate neighbors for the batch elements. Might be the same
as data.

* indices — An integral vector of shape (batch_count,) containing the indices of the
batch.

e nn_indices (ndarray) — An integral matrix of shape (batch_count, nn_count) listing the
nearest neighbor indices for the batch of data points.

Return type
ndarray

Returns
A tensor of shape (batch_count, nn_count, feature_count) whose last two dimen-
sions indicate difference vectors between the feature dimensions of each batch element and
those of its nearest neighbors.

crosswise_distances(data, nn_data, data_indices, nn_indices, **kwargs)
Compute a crosswise distance tensor between data and their nearest neighbors.
Takes full datasets of records of interest data and neighbor candidates nn_data and produces a scalar

distance between each element of data indicated by data_indices and each of the nearest neighbors in
nn_data as indicated by the corresponding rows of nn_indices. data and nn_data can refer to the same

dataset.
Parameters

¢ data (ndarray) - The data matrix of shape (data_count, feature_count) containing
batch elements.

e nn_data (ndarray) — The data matrix of shape (candidate_count, feature_count)
containing the universe of candidate neighbors for the batch elements. Might be the same
as data.

¢ indices — An integral vector of shape (batch_count,) containing the indices of the
batch.

e nn_indices (ndarray) — An integral matrix of shape (batch_count, nn_count) listing the
nearest neighbor indices for the batch of data points.

Return type

ndarray

18 Chapter 1. Citation

MuyGPyS, Release beta

Returns
A tensor of shape (batch_count, nn_count) whose second dimension indicates distance
vectors between each batch element and its nearest neighbors.

pairwise_differences(data, nn_indices, **kwargs)
Compute a pairwise difference tensor among sets of nearest neighbors.

Takes a full dataset of records of interest data and produces the pairwise differences for each feature
dimension between the elements indicated by each row of nn_indices.

Parameters

¢ data (ndarray) — The data matrix of shape (batch_count, feature_count) contain-
ing batch elements.

e nn_indices (ndarray) — An integral matrix of shape (batch_count, nn_count) listing the
nearest neighbor indices for the batch of data points.

Return type
ndarray

Returns
A tensor of shape (batch_count, nn_count, nn_count, feature_count) containing
the (nn_count, nn_count, feature_count)-shaped pairwise nearest neighbor differ-
ence tensors corresponding to each of the batch elements.
pairwise_distances(data, nn_indices, **kwargs)

Compute a pairwise distance tensor among sets of nearest neighbors.

Takes a full dataset of records of interest data and produces the pairwise distances between the elements
indicated by each row of nn_indices.

Parameters

¢ data (ndarray) — The data matrix of shape (batch_count, feature_count) contain-
ing batch elements.

e nn_indices (ndarray) — An integral matrix of shape (batch_count, nn_count) listing the
nearest neighbor indices for the batch of data points.

Return type
ndarray

Returns
A tensor of shape (batch_count, nn_count, nn_count) containing the (nn_count,
nn_count)-shaped pairwise nearest neighbor distance tensors corresponding to each of the
batch elements.

MuyGPyS.gp.deformation.metric.12 = <MuyGPyS.gp.deformation.metric.MetricFn object>
12 or Euclidean metric function.

Computes the Euclidean distance between points:

n 1/2
de,(x,y) = (Z(ffz - yi)2)

Parameters
dists — A difference tensor of shape (..., feature_count).

Returns
A distance tensor of shape (...).

1.2. gp 19

MuyGPyS, Release beta

1.2.6 noise

class MuyGPyS.gp.noise.homoscedastic.HomoscedasticNoise (val, bounds='fixed',
_backend_fn=<function
_homoscedastic_perturb>)

A scalar prior noise parameter.
A homoscedastic noise parameter used to build the “nugget” with the prior assumption that all observations are

subject to i.i.d. unbiased Gaussian noise. Can be set at initialization time or left subject to optimization, in which
case (positive) bounds are specified.

Parameters
» val (Union[str, float]) — A positive scalar, or the strings "sample" or "log_sample".

* bounds (Union[str, Tuple[float, float]]) — Iterable container of len 2 containing posi-
tive lower and upper bounds (in that order), or the string "fixed".

Raises
ValueError — Any nonpositive bounds string will produce an error.

perturb (Kin, noise=None, **kwargs)
Perturb a kernel tensor with homoscedastic noise.

Applies a homoscedastic noise model to a kernel tensor, whose last two dimensions are assumed to be the
same length. For each such square submatrix Kin, computes the form Kin + 72 %I, where 72 is the shared
noise prior variance and [is the conforming identity matrix.

Parameters

¢ Kin (ndarray) — A tensor of shape (batch_count, nn_count, nn_count) containing
the (nn_count, nn_count)-shaped kernel matrices corresponding to each of the batch
elements.

* noise (Optional[float]) — A floating-point value for the noise variance prior, or None.
None prompts the use of the stored value, whereas supplying alternative values is employed
during optimization.

Return type
ndarray

Returns
A tensor of shape (batch_count, nn_count, nn_count) where the final two dimensions
consist of the perturbed matrices of the input Kin.

perturb_f£n(fn)

Perturb a function of kernel tensors with homoscedastic noise.

Applies a homoscedastic noise model to the first argument of the given function, which is assumed to be
a kernel tensor whose last two dimensions are the same length. The returned function is the same as the
input, save that it perturbs any passed kernel tensors.

Parameters
fn (Callable) — A callable whose first argument is assumed to be a tensor of
shape (batch_count, nn_count, nn_count) containing the (nn_count, nn_count)-
shaped kernel matrices corresponding to each of the batch elements.

Return type
Callable

20 Chapter 1. Citation

MuyGPyS, Release beta

Returns
A Callable with the same signature that applies a homoscedastic perturbation to its first argu-
ment. Also adds a noise keyword argument that is only used for optimization.
class MuyGPyS.gp.noise.null.NullNoise(*args, **kwargs)

A zero noise assumption model.

perturb (Kin, **kwargs)

Null noise perturbation.
Simply returns the input tensor unchanged.

Parameters
Kin (ndarray) — A tensor of shape (batch_count, nn_count, nn_count) containing

the (nn_count, nn_count)-shaped kernel matrices corresponding to each of the batch el-
ements.

Return type
ndarray

Returns
The same tensor.

class MuyGPyS.gp.noise.heteroscedastic.HeteroscedasticNoise (val, _backend_fn=<function
_heteroscedastic_perturb>)
A tensor noise parameter.

A heteroscedastic noise tensor used to build the “nugget” with the prior assumption that all observations are have
a corresponding measurement noise prior variance.

Parameters
val (ndarray) — An ndarray of shape (batch_count, nn_count) containing the het-
eroscedastic nugget matrix.

Rals\efsalueError — Any strictly negative entry in the array will produce an error.
fixed(O
Overloading fixed function to return True for heteroscedastic noise.
Return type
bool
Returns

True - we do not allow optimizing Heteroscedastic Noise.
perturb (Kin, **kwargs)

Perturb a kernel tensor with heteroscedastic noise.

Applies a heteroscedastic noise model to a kernel tensor, whose last two dimensions are assumed to be the
same length. For each such square submatrix K¢n, computes the form Kin + D, where D is the diagonal
matrix containing the observation-wise noise priors.

Parameters
Kin (ndarray) — A tensor of shape (batch_count, nn_count, nn_count) containing

the (nn_count, nn_count)-shaped kernel matrices corresponding to each of the batch el-
ements.

Return type
ndarray

1.2. gp 21

MuyGPyS, Release beta

Returns
A tensor of shape (batch_count, nn_count, nn_count) where the final two dimensions
consist of the perturbed matrices of the input Kin.

perturb_1fn(fi)

Perturb a function of kernel tensors with heteroscedastic noise.

Applies a heteroscedastic noise model to the first argument of the given function, which is assumed to be
a kernel tensor whose last two dimensions are the same length. The returned function is the same as the
input, save that it perturbs any passed kernel tensors.

Parameters
fn (Callable) — A callable whose first argument is assumed to be a tensor of
shape (batch_count, nn_count, nn_count) containing the (nn_count, nn_count)-
shaped kernel matrices corresponding to each of the batch elements.

Return type
Callable

Returns
A Callable with the same signature that applies a homoscedastic perturbation to its first argu-
ment.

1.2.7 MuyGPS

class MuyGPyS.gp.muygps.MuyGPS (kernel, noise=<MuyGPyS.gp.noise.homoscedastic. HomoscedasticNoise
object>, scale=<MuyGPyS.gp.hyperparameter.scale.FixedScale object>,
_backend_mean_fn=<function _muygps_posterior_mean=,
_backend_var_fn=<function _muygps_diagonal_variance>,
_backend_fast_mean_fn=<function _muygps_fast_posterior_mean=>,
_backend_fast_precompute_fn=<function
_muygps_fast_posterior_mean_precompute>)

Local Kriging Gaussian Process.

Performs approximate GP inference by locally approximating an observation’s response using its nearest neigh-
bors. Implements the MuyGPs algorithm as articulated in [muyskens202 1 muygps].

Kernels accept different hyperparameter dictionaries specifying hyperparameter settings. Keys can include val
and bounds. bounds must be either a len == 2 iterable container whose elements are scalars in increasing order,
or the string fixed. If bounds == fixed (the default behavior), the hyperparameter value will remain fixed
during optimization. val must be either a scalar (within the range of the upper and lower bounds if given) or the
strings "sample" or log_sample", which will randomly sample a value within the range given by the bounds.

In addition to individual kernel hyperparamters, each MuyGPS object also possesses a noise model, possibly
with parameters, and a vector of o2 indicating the scale parameter associated with the posterior variance of each
dimension of the response.

22 Chapter 1. Citation

MuyGPyS, Release beta

Example

>>> from MuyGPyS.gp import MuyGPS
>>> muygps = MuyGPS(
kernel=Matern(
smoothness=Parameter(0.38, (0.1, 2.5)),
deformation=Isotropy(
metric=F2,
length_scale=Parameter(0.2),
)
)
noise=HomoscedasticNoise(le-5),
scale=AnalyticScale(),

MuyGPyS depends upon linear operations on specially-constructed tensors in order to efficiently estimate GP
realizations. One can use (see their documentation for details) MuyGPyS.gp. tensors.pairwise_tensor() to
construct pairwise difference tensors and MuyGPyS . gp. tensors.crosswise_tensor() to produce crosswise
diff tensors that MuyGPS can then use to construct kernel tensors and cross-covariance matrices, respectively.

We can easily realize kernel tensors using a MuyGPS object’s kernel functor once we have computed a
pairwise_diffs tensor and a crosswise_diffs matrix.

Example

>>> Kin = muygps.kernel (pairwise_diffs)
>>> Kcross = muygps.kernel (crosswise_diffs)

Parameters

* kernel (KernelFn) — The kernel to be used. Defines King(-,-) as referenced in MuyGPS
functions.

e noise (NoiseFn) — A noise model. Defines ¢ as referenced in MuyGPS functions.

2

» scale (ScaleFn) — A variance scale parameter. Defines o as referenced in MuyGPS func-

tions.

fast_coefficients(Kin, train_nn_targets_fast)
Produces coefficient matrix for the fast posterior mean given in Equation (8) of [dunton2022fast].
Given observation set X with responses Y, noise prior set ¢, and kernel function King(-,-), computes

the following for each observation element x; with nearest neighbors index set N;*, containing i and the
indices of the nn_count - 1 nearest neighbors of x;:

C; = (King(XNﬂXNi) + 5N7¢)71Y(XN7¢)~

Parameters

e Kin (ndarray) — A tensor of shape (batch_count, nn_count, nn_count) containing
the (nn_count, nn_count)-shaped kernel matrices corresponding to each of the batch
elements.

e Kcross — A matrix of shape (batch_count, nn_count) whose rows consist of (1,
nn_count)-shaped cross-covariance vector corresponding to each of the batch elements
and its nearest neighbors.

1.2

gp 23

MuyGPyS, Release beta

Return type
ndarray

Returns
A matrix C' of shape (train_count, nn_count) whose rows are the precomputed coeffi-
cients for fast posterior mean inference.

fast_posterior_mean(Kcross, coeffs_tensor)

Performs fast posterior mean inference using provided cross-covariance and precomputed coefficient ma-
trix.

Assumes that cross-covariance matrix Kcross is already computed and given as an argument.

Returns the predicted response in the form of a posterior mean for each element of the batch of ob-
servations, as computed in Equation (9) of [dunton2022fast]. Given the coefficients C' created by
fast_coefficients() and Equation (8) of [dunton2022fast], observation set X, noise prior set €, and
kernel function King(-,-), computes the following for each test point z and index set IV;* containing the
union of the index ¢ of the nearest neighbor x; of z and the nn_count - 1 nearest neighbors of x;:

Y (z| X) = 0®King(z, Xy)C;.

Parameters

* Kcross (ndarray) — A matrix of shape (batch_count, nn_count) whose rows consist
of (1, nn_count)-shaped cross-covariance vector corresponding to each of the batch
elements and its nearest neighbors.

¢ coeffs_tensor (ndarray) — A matrix of shape (batch_count, nn_count,
response_count) whose rows are given by precomputed coefficients.
Return type
ndarray
Returns

A matrix of shape (batch_count, response_count) whose rows are the predicted re-
sponse for each of the given indices.

fixed(

Checks whether all kernel and model parameters are fixed.
This is a convenience utility to determine whether optimization is required.

Return type
bool

Returns
Returns True if all parameters are fixed, and False otherwise.

get_opt_mean_fn()

Return a posterior mean function for use in optimization.
Assumes that optimization parameter literals will be passed as keyword arguments.

Return type
Callable

Returns
A function implementing the posterior mean, where noise is either fixed or takes updat-
ing values during optimization. The function expects keyword arguments corresponding to
current hyperparameter values for unfixed parameters.

24

Chapter 1. Citation

MuyGPyS, Release beta

get_opt_params()

Return lists of unfixed hyperparameter names, values, and bounds.

Return type
Tuple[List[str], ndarray, ndarray]

Returns

names:
A list of unfixed hyperparameter names.

params:
A list of unfixed hyperparameter values.

bounds:
A list of unfixed hyperparameter bound tuples.

get_opt_var_fn(Q
Return a posterior variance function for use in optimization.
Assumes that optimization parameter literals will be passed as keyword arguments.

Return type
Callable

Returns
A function implementing posterior variance, where noise is either fixed or takes updating
values during optimization. The function expects keyword arguments corresponding to cur-
rent hyperparameter values for unfixed parameters.

make_predict_tensors (batch_indices, batch_nn_indices, test_features, train_features, train_targets,
*rkwargs)

Create the metric and target tensors for prediction using the model’s deformation.

Creates the crosswise_tensor, pairwise_tensor and batch_nn_targets tensors required by
posterior_mean() and posterior_variance().

Parameters

e batch_indices (ndarray) — A vector of integers of shape (batch_count,) identifying
the training batch of observations to be approximated.

e batch_nn_indices (ndarray) — A matrix of integers of shape (batch_count,
nn_count) listing the nearest neighbor indices for all observations in the batch.

» test_features (Optional[ndarray]) — The full floating point testing data matrix of
shape (test_count, feature_count).

e train_features (ndarray) — The full floating point training data matrix of shape
(train_count, ...).

e train_targets (ndarray) — A matrix of shape (train_count, ...) whose rows are
vector-valued responses for each training element.

Return type
Tuple[ndarray, ndarray, ndarray]
Returns
* crosswise_tensor — A tensor of shape (batch_count, nn_count, ...) whose second

and subsequent dimensions list the metric comparison between each batch element element
and its nearest neighbors.

. gp 25

MuyGPyS, Release beta

* pairwise_diffs — A tensor of shape (batch_count, nn_count, nn_count, ...) con-
taining the (nn_count, nn_count, ...)-shaped pairwise nearest neighbor metrics ten-
sors corresponding to each of the batch elements.

* batch_nn_targets — Tensor of floats of shape (batch_count, nn_count, ...) contain-
ing the expected response for each nearest neighbor of each batch element.

make_train_tensors (batch_indices, batch_nn_indices, train_features, train_targets, **kwargs)

Create the metric and target tensors needed for training.

Similar to make_predict_tensors() but returns the additional batch_targets matrix, which is only
defined for a batch of training data.

Parameters

* batch_indices (ndarray) — A vector of integers of shape (batch_count,) identifying
the training batch of observations to be approximated.

¢ batch_nn_indices (ndarray) — A matrix of integers of shape (batch_count,
nn_count) listing the nearest neighbor indices for all observations in the batch.

e train_features (ndarray) — The full floating point training data matrix of shape
(train_count, ...).

e train_targets (ndarray) — A matrix of shape (train_count, ...) whose rows are
vector-valued responses for each training element.

Return type
Tuple[ndarray, ndarray, ndarray, ndarray]
Returns
* crosswise_tensor — A tensor of shape (batch_count, nn_count, ...) whose second

and subsequent dimensions list the metric comparison between each batch element element
and its nearest neighbors.

* pairwise_diffs — A tensor of shape (batch_count, nn_count, nn_count, ...) con-
taining the (nn_count, nn_count, ...)-shaped pairwise nearest neighbor metrics ten-
sors corresponding to each of the batch elements.

* batch_targets — Matrix of floats of shape (batch_count, ...) whose rows give the ex-
pected response for each batch element.

* batch_nn_targets — Tensor of floats of shape (batch_count, nn_count, ...) contain-
ing the expected response for each nearest neighbor of each batch element.
optimize_scale(pairwise_diffs, nn_targets)

Optimize the value of the sigma? scale parameter.
Uses the optimization method specified by the type of the scale parameter to optimize its value.
Parameters

e pairwise_diffs (ndarray) — A tensor of shape (batch_count, nn_count,
nn_count, feature_count) containing the (nn_count, nn_count,
feature_count)-shaped pairwise nearest neighbor difference tensors correspond-
ing to each of the batch elements.

e nn_targets (ndarray) — Tensor of floats of shape (batch_count, nn_count,
response_count) containing the expected response for each nearest neighbor of each
batch element.

26 Chapter 1. Citation

MuyGPyS, Release beta

Returns
A reference to this model with a freshly-optimized scale parameter.

posterior_mean(Kin, Kcross, batch_nn_targets)

Returns the posterior mean from the provided covariance, cross-covariance, and target tensors.

Computes parallelized local solves of systems of linear equations using the last two dimensions of Kin
along with Kcross and batch_nn_targets to predict responses in terms of the posterior mean. Assumes
that kernel tensor Kin and cross-covariance matrix Kcross are already computed and given as arguments.

Returns the predicted response in the form of a posterior mean for each element of the batch of observations,
as computed in Equation (3.4) of [muyskens2021muygps]. Given observation set X with responses Y,
noise prior set €, and kernel function King(-,-), computes the following for each prediction element z;
with nearest neighbors index set NV;:

?(Zi | XNl) = 02Kin0(zia XNi)(Kine(XNi’ XNz) + ENi)il.Y(XNi)'

Parameters

* Kin (ndarray) — A tensor of shape (batch_count, nn_count, nn_count) containing
the (nn_count, nn_count)-shaped kernel matrices corresponding to each of the batch
elements.

* Kcross (ndarray) — A matrix of shape (batch_count, nn_count) whose rows consist
of (1, nn_count)-shaped cross-covariance vector corresponding to each of the batch
elements and its nearest neighbors.

¢ batch_nn_targets (ndarray) — A tensor of shape (batch_count, nn_count,
response_count) whose last dimension lists the vector-valued responses for the near-
est neighbors of each batch element.

Return type
ndarray

Returns
A matrix of shape (batch_count, response_count) whose rows are the predicted re-
sponse for each of the given indices.

posterior_variance (Kin, Kcross)

Returns the posterior variance from the provided covariance and cross-covariance tensors.

Return the local posterior variances of each prediction, corresponding to the diagonal elements of a covari-
ance matrix. Given observation set X with responses Y, noise prior set £, and kernel function King(-, -),
computes the following for each prediction element z; with nearest neighbors index set V;:

Var (?(zi | XNi)) = 02 (King(zi,2:) — King(zi, Xn,) (King(Xn,, Xn,) + en,) " King(Xn,,2)) -

Parameters

e Kin (ndarray) — A tensor of shape (batch_count, nn_count, nn_count) containing
the (nn_count, nn_count)-shaped kernel matrices corresponding to each of the batch
elements.

* Kcross (ndarray) — A matrix of shape (batch_count, nn_count) whose rows consist
of (1, nn_count)-shaped cross-covariance vector corresponding to each of the batch
elements and its nearest neighbors.

Return type
ndarray

1.2. gp

27

MuyGPyS, Release beta

Returns
A vector of shape (batch_count, response_count) consisting of the diagonal elements
of the posterior variance.

1.2.8 MultivariateMuyGPS

class MuyGPyS.gp.multivariate_muygps.MultivariateMuyGPS (*model_args)

Multivariate Local Kriging Gaussian Process.

Performs approximate GP inference by locally approximating an observation’s response using its nearest neigh-
bors with a separate kernel allocated for each response dimension, implemented as individual MuyGPyS. gp.
muygps . MuyGPS objects.

This class is similar in interface to MuyGPyS. gp . muygps . MuyGPS, but requires a list of hyperparameter dicts at
initialization.

Example

>>> from MuyGPyS.gp import MultivariateMuyGPS as MMuyGPS

>>> k_kwargsl = {

"noise": Parameter(le-5),

"kernel": Matern(
smoothness=Parameter(0.67, (0.1, 2.5)),
deformation=Isotropy(

metric=12,
length_scale=Parameter(0.2),
scale=AnalyticScale(),

.),

ce.)

>>> k_kwargs2 = {

"noise": Parameter(le-5),

"kernel": Matern(
smoothness=Parameter(0.67, (0.1, 2.5)),
deformation=Isotropy(

metric=12,
length_scale=Parameter(0.2),
scale=AnalyticScale(),

..),

.

>>> k_args = [k_kwargsl, k_kwargs2]
>>> mmuygps = MMuyGPS (*k_args)

We can realize kernel tensors for each of the models contained within a Mul tivariateMuyGPS object by iterating
over its models member. Once we have computed pairwise_diffs and crosswise_diffs tensors, it is
straightforward to perform each of these realizations.

28

Chapter 1. Citation

MuyGPyS, Release beta

Example

>>> for model in MuyGPyS.models:

>>>
>>>
>>>

Args

Kin = model.kernel (pairwise_diffs)
Kcross = model .kernel(crosswise_diffs)
do something with Kin and Kcross...

model_args:
Dictionaries defining each internal MuyGPyS. gp . muygps . MuyGPS instance.

fast_coefficients (pairwise_diffs_fast, train_nn_targets_fast)

Produces coefficient matrix for the fast posterior mean given in Equation (8) of [dunton2022fast] for each
response dimenion.

Fro each response dimension j, given observation set X with responses Y, noise prior set £(/), and kernel
function King) (-, -), computes the following for each observation element x; with nearest neighbors index
set IV, containing i and the indices of the nn_count - 1 nearest neighbors of x;:

‘ A\ —1
CZ(J) = <Kin9(i) (XN17XN1) + E%B) Y(XNZ)’]

Parameters

e pairwise_diffs - A tensor of shape (train_count, nn_count, nn_count,
feature_count) containing the (nn_count, nn_count, feature_count)-shaped
pairwise nearest neighbor difference tensors corresponding to each of the batch elements.

e batch_nn_targets - A tensor of shape (train_count, nn_count,
response_count) listing the vector-valued responses for the nearest neighbors of
each batch element.

Return type
ndarray

Returns
A tensor of shape (batch_count, nn_count, response_count) whose entries com-
prise the precomputed coefficients for fast posterior mean inference.

fast_posterior_mean(crosswise_diffs, coeffs_tensor)

Performs fast posterior mean inference using provided cross-covariance and precomputed coefficient matrix
for each response dimension.

Returns the predicted response across each response dimension in the form of a posterior mean for each
element of the batch of observations, as computed in Equation (9) of [dunton2022fast]. For each re-
sponse dimension j, given the coefficients C'Y) created by fast_coefficients() and Equation (8) of
[dunton2022fast], observation set X, noise prior set £/, and kernel function K ingu (v,), computes the
following for each test point z and index set [N,* containing the union of the index ¢ of the nearest neighbor
x; of z and the nn_count - 1 nearest neighbors of x;:

Y (z | X)j = UQKinW)(z,XN;)CZ—(j).

Parameters

e crosswise_diffs (ndarray) — A matrix of shape (batch_count, nn_count,
feature_count) whose rows list the difference between each feature of each batch el-
ement element and its nearest neighbors.

1.2. gp

29

MuyGPyS, Release beta

e coeffs_tensor (ndarray) — A tensor of shape (batch_count, nn_count,
response_count) providing the precomputed coefficients.

Return type
ndarray

Returns
A matrix of shape (batch_count, response_count) whose rows are the predicted re-
sponse for each of the given indices.

fixed (O

Checks whether all kernel and model parameters are fixed for each model, excluding o2.

Return type
bool

Returns
Returns True if all parameters in all models are fixed, and False otherwise.

make_predict_tensors (batch_indices, batch_nn_indices, test_features, train_features, train_targets,

*kkwargs)
Create the metric and target tensors for prediction using the model’s deformation.

@NOTE[mwp] uses the first model’s deformation, and expects all model deformations to agree in tensor
shapes.

Creates the crosswise_tensor, pairwise_tensor and batch_nn_targets tensors required by
posterior_mean() and posterior_variance().

Parameters

* batch_indices (ndarray) — A vector of integers of shape (batch_count,) identifying
the training batch of observations to be approximated.

e batch_nn_indices (ndarray) — A matrix of integers of shape (batch_count,
nn_count) listing the nearest neighbor indices for all observations in the batch.

» test_features (Optional[ndarray]) — The full floating point testing data matrix of
shape (test_count, feature_count).

e train_features (ndarray) — The full floating point training data matrix of shape
(train_count, ...).

e train_targets (ndarray) — A matrix of shape (train_count, ...) whose rows are
vector-valued responses for each training element.

Return type
Tuple[ndarray, ndarray, ndarray]
Returns
* crosswise_tensor — A tensor of shape (batch_count, nn_count, ...) whose second

and subsequent dimensions list the metric comparison between each batch element element
and its nearest neighbors.

* pairwise_diffs — A tensor of shape (batch_count, nn_count, nn_count, ...) con-
taining the (nn_count, nn_count, ...)-shaped pairwise nearest neighbor metrics ten-
sors corresponding to each of the batch elements.

* batch_nn_targets — Tensor of floats of shape (batch_count, nn_count, ...) contain-
ing the expected response for each nearest neighbor of each batch element.

30

Chapter 1. Citation

MuyGPyS, Release beta

make_train_tensors (batch_indices, batch_nn_indices, train_features, train_targets, **kwargs)

Create the metric and target tensors needed for training.

@NOTE[mwp] uses the first model’s deformation, and expects all model deformations to agree in tensor
shapes.

Similar to make_predict_tensors() but returns the additional batch_targets matrix, which is only
defined for a batch of training data.

Parameters

¢ batch_indices (ndarray) — A vector of integers of shape (batch_count,) identifying
the training batch of observations to be approximated.

e batch_nn_indices (ndarray) — A matrix of integers of shape (batch_count,
nn_count) listing the nearest neighbor indices for all observations in the batch.

e train_features (ndarray) — The full floating point training data matrix of shape
(train_count, ...).

e train_targets (ndarray) — A matrix of shape (train_count, ...) whose rows are
vector-valued responses for each training element.

Return type
Tuple[ndarray, ndarray, ndarray, ndarray]
Returns
* crosswise_tensor — A tensor of shape (batch_count, nn_count, ...) whose second

and subsequent dimensions list the metric comparison between each batch element element
and its nearest neighbors.

* pairwise_diffs — A tensor of shape (batch_count, nn_count, nn_count, ...) con-
taining the (nn_count, nn_count, ...)-shaped pairwise nearest neighbor metrics ten-
sors corresponding to each of the batch elements.

* batch_targets — Matrix of floats of shape (batch_count, ...) whose rows give the ex-
pected response for each batch element.

* batch_nn_targets — Tensor of floats of shape (batch_count, nn_count, ...) contain-
ing the expected response for each nearest neighbor of each batch element.

optimize_scale(pairwise_diffs, nn_targets)

Optimize the value of the sigma? scale parameter for each response dimension.
Uses the optimization method specified by the types of the scale parameters to optimize their value.
Parameters

e pairwise_diffs (ndarray) — A tensor of shape (batch_count, nn_count,
nn_count, feature_count) containing the (nn_count, nn_count,
feature_count)-shaped pairwise nearest neighbor difference tensors correspond-
ing to each of the batch elements.

e nn_targets (ndarray) — Tensor of floats of shape (batch_count, nn_count,
response_count) containing the expected response for each nearest neighbor of each
batch element.

Returns
A reference to this model whose global scale parameter (and those of its submodels) has been
optimized.

1.2

31

MuyGPyS, Release beta

posterior_mean (pairwise_diffs, crosswise_diffs, batch_nn_targets)

Performs simultaneous posterior mean inference on provided difference tensors and the target matrix.

Computes parallelized local solves of systems of linear equations using the kernel realizations, one for
each internal model, of the last two dimensions of pairwise_diffs along with crosswise_diffs and
batch_nn_targets to predict responses in terms of the posterior mean. Assumes that difference tensors
pairwise_diffs and crosswise_diffs are already computed and given as arguments.

Returns the predicted response in the form of a posterior mean for each element of the batch of observa-
tions by solving a system of linear equations induced by each kernel functor, one per response dimension,
in a generalization of Equation (3.4) of [muyskens2021muygps]. For each response dimension j, given
observation set X with responses Y, noise prior set £, and kernel function K ingu) (-, -), computes the
following for each prediction element z; with nearest neighbors index set N;:

~ . —1
Y(zi | Xn,); = 07 Kingo) (2i, Xn,) (Kiné(j)(XNmXNi) + 5%)) Y(XnN,). 4

Parameters

e pairwise_diffs (ndarray) — A tensor of shape (batch_count, nn_count,
nn_count, feature_count) containing the (nn_count, nn_count,
feature_count)-shaped pairwise nearest neighbor difference tensors correspond-
ing to each of the batch elements.

e crosswise_diffs (ndarray) — A matrix of shape (batch_count, nn_count,
feature_count) whose rows list the difference between each feature of each batch el-
ement element and its nearest neighbors.

e batch_nn_targets (ndarray) — A tensor of shape (batch_count, nn_count,
response_count) listing the vector-valued responses for the nearest neighbors of each
batch element.

Return type
ndarray

Returns
A matrix of shape (batch_count, response_count) whose rows are the predicted re-
sponse for each of the given indices.

posterior_variance (pairwise_diffs, crosswise_diffs)

Returns the posterior variance from the provided difference tensors.

Return the local posterior variances of each prediction, corresponding to the diagonal elements of a co-
variance matrix. For each response dimension, given observation set X with responses Y, noise prior set
¢ and kernel function K ing) (-, -), computes the following for each prediction element z; with nearest
neighbors index set N;:

Var (?(zl | XNi)) = O'j2- (Kin9<j> (zi,2i) — Kingy) (2, Xn,) (Kingo) (Xn,, Xn,) + 5%3)_1Kin9(j)(XNi7Zi)) .

J
Parameters

e pairwise_diffs (ndarray) — A tensor of shape (batch_count, nn_count,
nn_count, feature_count) containing the (nn_count, nn_count,
feature_count)-shaped pairwise nearest neighbor difference tensors correspond-
ing to each of the batch elements.

e crosswise_diffs (ndarray) — A matrix of shape (batch_count, nn_count,
feature_count) whose rows list the difference between each feature of each batch el-
ement element and its nearest neighbors.

32

Chapter 1. Citation

MuyGPyS, Release beta

Return type
ndarray

Returns
A vector of shape (batch_count, response_count) consisting of the diagonal elements
of the posterior variance for each model.

1.3 optimize

MuyGPyS.optimize module reference.

1.3.1 batch

Sampling elements with their nearest neighbors from data

MuyGPyS includes convenience functions for sampling batches of data from existing datasets. These batches are
returned in the form of row indices, both of the sampled data as well as their nearest neighbors. Also included is the
ability to sample “balanced” batches, where the data is partitioned by class and we attempt to sample as close to an
equal number of items from each class as is possible.

MuyGPyS.optimize.batch.full_filtered_batch(nbrs_lookup, labels)
Return a batch composed of the entire training set, filtering out elements with constant nearest neighbor sets.

Parameters
* nbrs_lookup (NN_Irapper) — Trained nearest neighbor query data structure.
* labels (ndarray) — List of class labels of shape (train_count,) for all train data.

Return type
Tuple[ndarray, ndarray]

Returns
* indices — The indices of the sampled training points of shape (batch_count,).

* nn_indices — The indices of the nearest neighbors of the sampled training points of shape
(batch_count, nn_count).

MuyGPyS.optimize.batch.get_balanced_batch(nbrs_lookup, labels, batch_count)
Decide whether to sample a balanced batch or return the full filtered batch.
This method is the go-to method for sampling from classification datasets when one desires a sam-
ple with equal representation of every class. The function simply calls MuyGPyS.optimize.batch.

full_filtered_batch() if the supplied list of training data class labels is smaller than the batch count, oth-
erwise calling MuyGPyS.optimize.batch_sample_balanced_batch().

1.3. optimize 33

MuyGPyS, Release beta

Example

>>> import numpy as np

>>> From MuyGPyS.optimize.batch import get_balanced_batch

>>> train_features, train_responses = get_train()

>>> nn_count = 10

>>> nbrs_lookup = NN_Wrapper(train_features, nn_count)

>>> batch_count = 200

>>> train_labels = np.argmax(train_responses, axis=1)

>>> balanced_indices, balanced_nn_indices = get_balanced_batch(
- nbrs_lookup, train_labels, batch_count

>>>)

Parameters
* nbrs_lookup (NN_iirapper) — Trained nearest neighbor query data structure.
* labels (ndarray) — List of class labels of shape (train_count,) for all training data.
* batch_count (int) — int The number of batch elements to sample.
Return type
Tuple[ndarray, ndarray]
Returns

* indices — The indices of the sampled training points of shape (batch_count,).
» nn_indices — The indices of the nearest neighbors of the sampled training points of shape
(batch_count, nn_count).

MuyGPyS.optimize.batch.sample_balanced_batch(nbrs_lookup, labels, batch_count)
Collect a class-balanced batch of training indices.

The returned batch is filtered to remove samples whose nearest neighbors share the same class label, and is
balanced so that each class is equally represented (where possible.)

Parameters
* nbrs_lookup (NN_Iirapper) — Trained nearest neighbor query data structure.
* labels (ndarray) — List of class labels of shape (train_count,) for all train data.
* batch_count (int) — The number of batch elements to sample.

Return type
Tuple[ndarray, ndarray]

Returns

* nonconstant_balanced_indices — The indices of the sampled training points of shape
(batch_count,). These indices are guaranteed to have nearest neighbors with differing
class labels.

* batch_nn_indices — The indices of the nearest neighbors of the sampled training points of
shape (batch_count, nn_count).

MuyGPyS.optimize.batch.sample_batch(nbrs_lookup, batch_count, train_count)

Collect a batch of training indices.

This is a simple sampling method where training examples are selected uniformly at random, without replace-
ment.

34 Chapter 1. Citation

MuyGPyS, Release beta

Example

>>> From MuyGPyS.optimize.batch import sample_batch
>>> train_features, train_responses = get_train()

>>> train_count, _ = train_features.shape

>>> nn_count = 10

>>> nbrs_lookup = NN_Wrapper(train_features, nn_count)
>>> batch_count = 200

>>> batch_indices, batch_nn_indices = sample_batch(
- nbrs_lookup, batch_count, train_count

>>>)

Parameters
* nbrs_lookup (NN_Iirapper) — Trained nearest neighbor query data structure.
* batch_count (int) — The number of batch elements to sample.
* train_count (int) — int The total number of training examples.
Return type
Tuple[ndarray, ndarray]
Returns

* batch_indices — The indices of the sampled training points of shape (batch_count,).

* batch_nn_indices — The indices of the nearest neighbors of the sampled training points of
shape (batch_count, nn_count).

1.3.2 chassis

class MuyGPyS.optimize.chassis.OptimizeFn (optimize_fn, make_obj_fn)

Outer-loop optimization functor class.

MuyGPyS-compatible optimization functions are objects of this class. Creating a new outer-loop optimization
function is as simple as instantiating a new OptimizeFn object.

Parameters

» optimize_fn — A Callable with the signature (muygps, obj_fn, verbose=verbose,
**kwargs) -> MuyGPS.

» make_obj_fn - A Callable taking the following objects, in order: loss_fn,
kernel_fn, mean_fn, var_fn, scale_fn, pairwise_diffs, crosswise_diffs
batch_nn_targets, batch_targets batch_features, loss_kwargs.

make_obj_£n(muygps, batch_targets, batch_nn_targets, crosswise_diffs, pairwise_diffs,
batch_features=None, target_mask=None, loss_fn=<MuyGPyS.optimize.loss.LossFn object>,
loss_kwargs={}, **kwargs)

Returns the objective function specified by the training batch and model choices.
Parameters
e muygps (MuyGPS) — The model to be optimized.

e batch_targets (ndarray) - Matrix of floats of shape (batch_count,
response_count) whose rows give the expected response for each batch element.

1.3. optimize 35

MuyGPyS, Release beta

e batch_nn_targets (ndarray) — Tensor of floats of shape (batch_count, nn_count,

response_count) containing the expected response for each nearest neighbor of each
batch element.

e crosswise_diffs (ndarray) — A tensor of shape (batch_count, nn_count,

feature_count) whose last two dimensions list the difference between each feature of
each batch element element and its nearest neighbors.

pairwise_diffs (ndarray) — A tensor of shape (batch_count, nn_count,
nn_count, feature_count) containing the (nn_count, nn_count,
feature_count)-shaped pairwise nearest neighbor difference tensors correspond-
ing to each of the batch elements.

¢ loss_£fn (LossFn) — The loss functor used to evaluate model performance.

¢ target_mask (Optional[ndarray]) — An array of indices, listing the output dimensions

of the prediction to be used for optimization.

* loss_kwargs (Dict) — A dictionary of additional keyword arguments to apply to the

LossFn. Loss function specific.

¢ kwargs — Additional keyword arguments to be passed to the wrapper optimizer.

Return type

Callable

Returns

A Callable function that evaluates the objective function for a given value of the free param-
eters.

MuyGPyS.optimize.chassis.Bayes_optimize = <MuyGPyS.optimize.chassis.OptimizeFn object>

Optimize a MuyGPS model using Bayesian optimization.

See the following example, where we have already created a batch_indices vector and a batch_nn_indices
matrix using MuyGPyS.neighbors.NN_Wrapper, a crosswise_diffs matrix using MuyGPyS.gp.tensors.
crosswise_tensor() and pairwise_diffs using MuyGPyS.gp.tensors.pairwise_tensor(), and ini-

tialized a MuyGPS model muygps.

Example

>>> from MuyGPyS.optimize import Bayes_optimize

>>> muygps =

<)

Bayes_optimize(
muygps,
batch_targets,
batch_nn_targets,
crosswise_diffs,
pairwise_diffs,
train_responses,
loss_fn=1oo0l_fn,
verbose=True,

parameters to be optimized: ['nu']
bounds: [[0.1 5. 1]

initial xO0:
| iter

[0.92898658]
| target | nu |

| 1.826e+03 | 0.929 |

(continues on next page)

36

Chapter 1. Citation

MuyGPyS, Release beta

(continued from previous page)

2	2.359e+03	2.143
3	1.953e+03	3.63
4	614.4	0.1006
5	2.309e+03	1.581
6	1.707e+03	0.8191
7	1.48e+03	5.0
8	2.202e+03	2.83
9	2.373e+03	1.883
10	2.373e+03	1.996
11	2.375e+03	1.938
12	2.375e+03	1.938
13	2.375e+03	1.938
14	2.375e+03	1.938
15	2.375e+03	1.938 I
16	2.375e+03	1.938
17	2.375e+03	1.938
18	2.375e+03	1.945
19	2.375e+03	1.927
20	2.375e+03	1.95
21	2.375e+03	1.926
Parameters

* muygps — The model to be optimized.

* batch_targets — Matrix of floats of shape (batch_count, response_count) whose
rows give the expected response for each batch element.

* batch_nn_targets - Tensor of floats of shape (batch_count, nn_count,
response_count) containing the expected response for each nearest neighbor of
each batch element.

» crosswise_diffs — A tensor of shape (batch_count, nn_count, feature_count)
whose last two dimensions list the difference between each feature of each batch element
element and its nearest neighbors.

» pairwise_diffs - A tensor of shape (batch_count, nn_count, nn_count,
feature_count) containing the (nn_count, nn_count, feature_count)-shaped
pairwise nearest neighbor difference tensors corresponding to each of the batch elements.

* loss_£fn — The loss functor used to evaluate model performance.

* loss_kwargs — A dictionary of additional keyword arguments to apply to the LossFn. Loss
function specific.

» verbose — If True, print debug messages.

» kwargs — Additional keyword arguments to be passed to the wrapper optimizer.

Returns

A new MuyGPs model whose specified hyperparameters have been optimized.

MuyGPyS.optimize.chassis.L_BFGS_B_optimize = <MuyGPyS.optimize.chassis.OptimizeFn object>
Optimize a MuyGPS model using the L-BFGS-B algorithm.

See the following example, where we have already created a batch_indices vector and a batch_nn_indices
matrix using MuyGPyS.neighbors.NN_Wrapper, a crosswise_diffs matrix using MuyGPyS.gp.tensors.

1.3. optimize

37

MuyGPyS, Release beta

crosswise_tensor() and pairwise_diffs using MuyGPyS.gp.tensors.pairwise_tensor(), and ini-
tialized a MuyGPS model muygps.

Example

>>> from MuyGPyS.optimize import L_BFGS_B_optimize
>>> muygps = L_BFGS_B_optimize(
muygps,
batch_targets,
batch_nn_targets,
crosswise_diffs,
pairwise_diffs,
train_responses,
loss_fn=1oo0l_fn,
.. verbose=True,
-)

parameters to be optimized: ['nu']
bounds: [[0.1 1. 1]
sampled x0: [0.8858425]
optimizer results:

fun: 0.4797763813693626
hess_inv: <1x1 LbfgsInvHessProduct with dtype=float64>

jac: array([-3.06976666e-06])
message: b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'

nfev: 16

nit: 5

njev: 8
status: 0

success: True
x: array([0.39963594])

Parameters
* muygps — The model to be optimized.

* batch_targets — Matrix of floats of shape (batch_count, response_count) whose
rows give the expected response for each batch element.

* batch_nn_targets - Tensor of floats of shape (batch_count, nn_count,
response_count) containing the expected response for each nearest neighbor of
each batch element.

» crosswise_diffs — A tensor of shape (batch_count, nn_count, feature_count)
whose last two dimensions list the difference between each feature of each batch element
element and its nearest neighbors.

e pairwise_diffs - A tensor of shape (batch_count, nn_count, nn_count,
feature_count) containing the (nn_count, nn_count, feature_count)-shaped
pairwise nearest neighbor difference tensors corresponding to each of the batch elements.

* loss_£fn — The loss functor used to evaluate model performance.

* loss_kwargs — A dictionary of additional keyword arguments to apply to the LossFn. Loss
function specific.

» verbose - If True, print debug messages.

38 Chapter 1. Citation

MuyGPyS, Release beta

* kwargs — Additional keyword arguments to be passed to the wrapper optimizer.

Returns
A new MuyGPs model whose specified hyperparameters have been optimized.

1.3.3 loss

Loss Function Handling
MuyGPyS includes predefined loss functions and convenience functions for indicating them to optimization.

class MuyGPyS.optimize.loss.LossFn(loss_fn, make_predict_and_loss_fn)
Loss functor class.

MuyGPyS-compatible loss functions are objects of this class. Creating a new loss function is as simple as
instantiation a new LossFn object.

Parameters
e loss_fn (Callable) - A Callable with signature (predictions, targets,
**kwargs) or (predictions, targets, variances, scale, **kwargs) tha

computes a floating-point loss score of a set of predictions given posterior means and
possibly posterior variances. Individual loss functions can implement different kwargs as
needed.

* make_precit_and_loss_fn - A Callable with signature (loss_fn, mean_fn,
var_fn, scale_fn, batch_nn_targets, batch_targets, **loss_kwargs)
that produces a function that computes posterior predictions and scores them using the
loss function. :func:~MuyGPyS.optimize.loss._make_raw_predict_and_loss_fn" and
:func:~MuyGPyS.optimize.loss._make_var_predict_and_loss_fn" are two candidates.

MuyGPyS.optimize.loss.cross_entropy_fn = <MuyGPyS.optimize.loss.LossFn object>

Cross entropy function.

Computes the cross entropy loss the predicted versus known response. Transforms predictions to be row-
stochastic, and ensures that targets contains no negative elements. Only defined for two or more labels. For a
sample with true labels y; € {0, 1} and estimates u(x;) = Pr(y = 1), the function computes

b
ecrOSS—emmpy(ﬂa y) = Z yilog(fis) — (1 — y;) log(1 — fis).
i=1

The numpy backend uses sklearn’s implementation.
Parameters
» predictions — The predicted response of shape (batch_count, response_count).
* targets — The expected response of shape (batch_count, response_count).
* eps — Probabilities are clipped to the range [eps, 1 - eps].

Returns
The cross-entropy loss of the prediction.

MuyGPyS.optimize.loss.lool_fn = <MuyGPyS.optimize.loss.LossFn object>
Leave-one-out likelihood function.

1.3. optimize 39

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html

MuyGPyS, Release beta

Computes leave-one-out likelihood (LOOL) loss of the predicted versus known response. Treats multivariate
outputs as interchangeable in terms of loss penalty. The function computes

b
boo (1, Y, 2 ZZ () + (log Zii)
J

i=1 j=1
Parameters
» predictions - The predicted response of shape (batch_count, response_count).
» targets — The expected response of shape (batch_count, response_count).

» variances — The unscaled variance of the predicted responses of shape (batch_count,
response_count).

» scale - The scale variance scaling parameter of shape (response_count,).
Returns

The LOOL loss of the prediction.

MuyGPyS.optimize.loss.lool_fn_unscaled = <MuyGPyS.optimize.loss.LossFn object>
Leave-one-out likelihood function.

Computes leave-one-out likelihood (LOOL) loss of the predicted versus known response. Treats multivariate

outputs as interchangeable in terms of loss penalty. Unlike lool_fn, does not require scale as an argument. The
function computes

b o= y)?
elool)U’a y, Z + log Ezz

i=1

Parameters
» predictions - The predicted response of shape (batch_count, response_count).
* targets — The expected response of shape (batch_count, response_count).

» variances — The unscaled variance of the predicted responses of shape (batch_count,
response_count).

Returns
The LOOL loss of the prediction.

MuyGPyS.optimize.loss.looph_fn = <MuyGPyS.optimize.loss.LossFn object>
Variance-regularized pseudo-Huber loss function.

Computes a smooth approximation to the Huber loss function, similar to pseudo_huber_fn(), with the addi-
tion of both a variance scaling and a additive logarithmic variance regularization term to avoid exploding the
variance. This is intended to be an outlier-robust replacement to the lool function. Similar to pseudo-Huber, the
boundary_scale parameter is sensitive to the units of the responses, and must be set accordingly. The function
computes

lool (i, y, 2 | 6) = 22252 <\/ (W)—Qﬂlogz”)j.

=1 j=1
Parameters

» predictions — The predicted response of shape (batch_count, response_count).

* targets — The expected response of shape (batch_count, response_count).

40 Chapter 1. Citation

MuyGPyS, Release beta

» variances — The unscaled variance of the predicted responses of shape (batch_count,
response_count).

» scale — The scale variance scaling parameter of shape (response_count,).

* boundary_scale — The boundary value for the residual beyond which the loss becomes
approximately linear. Corresponds to the number of standard deviations beyond which to
linearize the loss. The default value is 3.0, which is sufficiently tight for most realistic prob-
lems.

Returns
The sum of leave-one-out pseudo-Huber losses of the predictions.

MuyGPyS.optimize.loss.make_raw_predict_and_loss_fn(loss_fn, mean_fn, var_fn, scale_fn,
batch_nn_targets, batch_targets,
target_mask=None, **loss_kwargs)

Make a predict_and_loss function that depends only on the posterior mean.

Assembles a new function with signature (Kin, Kcross, *args, **kwargs) that computes the posterior
mean and uses the passed 1loss_1£n to score it against the batch targets.

Parameters

* loss_fn (Callable) — A loss function Callable with signature (predictions,
responses, **kwargs), where predictions and targets are matrices of shape
(batch_count, response_count).

» mean_fn (Callable) — A MuyGPS posterior mean function Callable with signature
(Kin, Kcross, batch_nn_targets), which are tensors of shape (batch_count,
nn_count, nn_count), (batch_count, nn_count), and (batch_count,
nn_count, response_count), respectively.

» var_fn (Callable) — A MuyGPS posterior variance function Callable with signature
(Kin, Kcross), which are tensors of shape (batch_count, nn_count, nn_count)
and (batch_count, nn_count), respectively. Unused by this function, but still required
by the signature.

* scale_fn (Callable) — A MuyGPS scale optimization function Callable with signature
(Kin, batch_nn_targets), which are tensors of shape (batch_count, nn_count,
nn_count) and (batch_count, nn_count, response_count), respectively. Unused
by this function, but still required by the signature.

* batch_nn_targets (ndarray) — A tensor of shape (batch_count, nn_count,
response_count) containing the expected response of the nearest neighbors of each batch
element.

* batch_targets (ndarray)— A matrix of shape (batch_count, response_count) con-
taining the expected response of each batch element.

* loss_kwargs — Additionall keyword arguments used by the loss function.

Return type
Callable

Returns
A Callable with signature (Kin, Kcross, *args, **kwargs) -> float that computes the
posterior mean and applies the loss function to it and the batch_targets.

MuyGPyS.optimize.loss.make_var_predict_and_loss_£fn(loss_fn, mean_fn, var_fn, scale_fn,
batch_nn_targets, batch_targets,
target_mask=None, **loss_kwargs)

1.3. optimize 41

MuyGPyS, Release beta

Make a predict_and_loss function that depends on the posterior mean and variance.

Assembles a new function with signature (Kin, Kcross, *args, **kwargs) that computes the posterior
mean and variance and uses the passed 1oss_1£n to score them against the batch targets.

Parameters

* loss_fn (Callable) — A loss function Callable with signature (predictions,
responses, **kwargs), where predictions and targets are matrices of shape
(batch_count, response_count).

» mean_fn (Callable) — A MuyGPS posterior mean function Callable with signature
(Kin, Kcross, batch_nn_targets), which are tensors of shape (batch_count,
nn_count, nn_count), (batch_count, nn_count), and (batch_count,
nn_count, response_count), respectively.

e var_fn (Callable) — A MuyGPS posterior variance function Callable with signature
(Kin, Kcross), which are tensors of shape (batch_count, nn_count, nn_count)
and (batch_count, nn_count), respectively.

* scale_fn (Callable) — A MuyGPS scale optimization function Callable with signature
(Kin, batch_nn_targets), which are tensors of shape (batch_count, nn_count,
nn_count) and (batch_count, nn_count, response_count), respectively.

* batch_nn_targets (ndarray) — A tensor of shape (batch_count, nn_count,
response_count) containing the expected response of the nearest neighbors of each batch
element.

* batch_targets (ndarray)— A matrix of shape (batch_count, response_count) con-
taining the expected response of each batch element.

e target_mask (Optional[ndarray]) — An array of indices, listing the output dimensions
of the prediction to be used for optimization.

* loss_kwargs — Additionall keyword arguments used by the loss function.

Return type
Callable

Returns
A Callable with signature (Kin, Kcross, *args, **kwargs) -> float that computes the
posterior mean and applies the loss function to it and the batch_targets.

MuyGPyS.optimize.loss.mse_fn = <MuyGPyS.optimize.loss.LossFn object>

Mean squared error function.

Computes mean squared error loss of the predicted versus known response. Treats multivariate outputs as inter-
changeable in terms of loss penalty. The function computes

b
1
mse (2, y) = 3 Z(ﬂi -y)*.
=1

Parameters
» predictions — The predicted response of shape (batch_count, response_count).
* targets — The expected response of shape (batch_count, response_count).

Returns
The mse loss of the prediction.

42 Chapter 1. Citation

MuyGPyS, Release beta

MuyGPyS.optimize.loss.pseudo_huber_fn = <MuyGPyS.optimize.loss.LossFn object>

Pseudo-Huber loss function.

Computes a smooth approximation to the Huber loss function, which balances sensitive squared-error loss for
relatively small errors and robust-to-outliers absolute loss for larger errors, so that the loss is not overly sensitive
to outliers. Uses the form from wikipedia. The function computes

b _ 2
gPseudo-Huber(,L_"v Yy | 6) = Z 52 1+ <yz(5ul) -1
1=1

Parameters

Returns

predictions — The predicted response of shape (batch_count, response_count).
targets — The expected response of shape (batch_count, response_count).

boundary_scale — The boundary value for the residual beyond which the loss becomes
approximately linear. Useful values depend on the scale of the response.

The sum of pseudo-Huber losses of the predictions.

1.3.4 objective

Objective Handling

MuyGPyS includes predefined objective functions and convenience functions for indicating them to optimization.

MuyGPyS.optimize.objective.make_loo_crossval_fn(loss_fn, kernel_fn, mean_fn, var_fn, scale_fn,

pairwise_diffs, crosswise_diffs, batch_nn_targets,

batch_targets, batch_features=None,
target_mask=None, loss_kwargs={})

Prepare a leave-one-out cross validation function as a function purely of the hyperparameters to be optimized.

This function is designed for use with MuyGPyS.optimize.chassis.OptimizeFn.

Parameters

loss_fn (LossFn) — The loss functor used to evaluate model performance.

kernel_fn (Callable) — A function that realizes kernel tensors given a list of the free
parameters.

mean_£n (Callable) — A function that realizes MuyGPs posterior mean prediction given a
noise model.

var_fn (Callable) — A function that realizes MuyGPs posterior variance prediction given
a noise model.

scale_fn (Callable) — A function that realizes variance scale parameter optimization
given a noise model.

pairwise_diffs (ndarray) — A tensor of shape (batch_count, nn_count,
nn_count, feature_count) containing the (nn_count, nn_count,
feature_count)-shaped pairwise nearest neighbor difference tensors corresponding
to each of the batch elements.

crosswise_diffs (ndarray) — A tensor of shape (batch_count, nn_count,
feature_count) whose last two dimensions list the difference between each feature of
each batch element element and its nearest neighbors.

1.3. optimize

43

https://en.wikipedia.org/wiki/Huber_loss#Pseudo-Huber_loss_function

MuyGPyS, Release beta

* batch_nn_targets (ndarray) — Tensor of floats of shape (batch_count, nn_count,
response_count) containing the expected response for each nearest neighbor of each batch
element.

* batch_targets (ndarray) - Matrix of floats of shape (batch_count,
response_count) whose rows give the expected response for each batch element.

* batch_features (Optional[ndarray]) — Matrix of floats of shape (batch_count,
feature_count) whose rows give the features for each batch element.

* target_mask (Optional[ndarray]) — An array of indices, listing the output dimensions
of the prediction to be used for optimization.

* loss_kwargs (Dict) — A dict listing any additional kwargs to pass to the loss function.

Return type
Callable

Returns
A Callable objective_£n.

1.4 examples

MuyGPyS.examples module reference. Includes the high-level APIs for automated model creation and training, and
some automated prediction workflows.

1.4.1 regress

Resources and high-level API for a simple regression workflow.

make_regressor() is a high-level API for creating and training MuyGPyS. gp.muygps . MuyGPS objects for regres-
sion. make_multivariate_regressor() is a high-level API for creating and training MuyGPyS.gp.muygps.
MultivariateMuyGPS objects for regression.

do_regress() is a high-level api for executing a simple, generic regression workflow given data. It calls the maker
APIs above and regress_any ().

MuyGPyS.examples.regress.do_regress (fest_features, train_features, train_targets, nn_count=30,
batch_count=200, loss_fn=<MuyGPyS.optimize.loss.LossFn object>,
opt_fn=<MuyGPyS.optimize.chassis.OptimizeFn object>,
k_kwargs={}, nn_kwargs={}, opt_kwargs={}, verbose=False)

Convenience function initializing a model and performing regression.

Expected parameters include keyword argument dicts specifying kernel parameters and nearest neighbor param-
eters. See the docstrings of the appropriate functions for specifics.

Also supports workflows relying upon multivariate models. In order to create a multivariate model, pass a list of
hyperparameter dicts to k_kwargs.

44 Chapter 1. Citation

MuyGPyS, Release beta

Example

>>> from
>>> from
>>> from
>>> from
>>> from
>>> from
>>> from
>>> from
>>> from

>>> train_features, train
>>> test_

MuyGPyS.examples.regress import do_regress
MuyGPyS.gp.deformation import F2, Isotropy
MuyGPyS.gp.hyperparameter import Parameter
MuyGPyS.gp.hyperparameter import AnalyticScale
MuyGPyS.gp.kernels import RBF

MuyGPyS.gp.noise import HomoscedasticNoise
MuyGPyS.examples.regress import do_regress

MuyGPyS.optimize import Bayes_optimize
MuyGPyS.optimize.objective import mse_£n

_responses = make_train() # stand-in function
features, test_responses = make_test() # stand-in function

>>> nn_kwargs = {"nn_method": "exact", "algorithm": "ball_tree"}
>>> k_kwargs = {
"kernel": RBF(

deformation=Isotropy(

metric=F2,

length_scale=Parameter(1.0, (le-2, le2))
)

),

}

noise": HomoscedasticNoise(le-5),
scale": AnalyticScale(),

>>> muygps, nbrs_lookup, predictions, variance = do_regress(

<)

test_features,
train_features,
train_responses,
nn_count=30,
batch_count=200,
loss_fn=1ool_fn,
opt_fn=Bayes_optimize,
k_kwargs=k_kwargs,
nn_kwargs=nn_kwargs,
verbose=False,

>>> mse = mse_fn(test_responses, predictions)
>>> print(f"obtained mse: {mse}")

obtained

mse: 0.20842...

Parameters

* test_features (ndarray)— A matrix of shape (test_count, feature_count) whose
rows consist of observation vectors of the test data.

* train_ features (ndarray) — A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

e train_targets (ndarray) — A matrix of shape (train_count, response_count)
whose rows consist of response vectors of the train data.

* nn_count (int) — The number of nearest neighbors to employ.

* batch_count (int) — The number of elements to sample batch for hyperparameter opti-
mization.

1.4. examples

45

MuyGPyS, Release beta

* loss_£fn (LossFn) — The loss functor to use in hyperparameter optimization. Ignored if all
of the parameters specified by argument k_kwargs are fixed.

» opt_£n (OptimizeFn) — The optimization functor to use in hyperparameter optimization.
Ignored if all of the parameters specified by argument k_kwargs are fixed.

* k_kwargs (Union[Dict, List[Dict], Tuple[Dict, ...]]) — If given a list or tu-
ple of length response_count, assume that the elements are dicts containing ker-
nel initialization keyword arguments for the creation of a multivariate model (see
make_multivariate_regressor()). If given a dict, assume that the elements are key-
word arguments to a MuyGPs model (see make_regressor()).

* nn_kwargs (Dict) — Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

* opt_kwargs (Dict) — Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

» verbose (bool) — If True, print summary statistics.

Return type
Tuple[Union[MuyGPS, MultivariateMuyGPS], NN_Wrapper, ndarray, ndarray]

Returns
* muygps — A (possibly trained) MuyGPs object.
* nbrs_lookup — A data structure supporting nearest neighbor queries into train_features.
* predictions — The predicted response associated with each test observation.

* variance — Estimated (test_count, response_count) posterior variance of each test
prediction.

MuyGPyS.examples.regress.make_multivariate_regressor (train_features, train_targets, nn_count=30,

batch_count=200,
loss_fn=<MuyGPyS.optimize.loss.LossFn
object>,
opt_fn=<MuyGPyS.optimize.chassis.OptimizeFn
object>, k_args=[], nn_kwargs={},
opt_kwargs={}, verbose=False)

Convenience function for creating a Multivariate MuyGPyS functor and neighbor lookup data structure.

Expected parameters include a list of keyword argument dicts specifying kernel parameters and a dict listing
nearest neighbor parameters. See the docstrings of the appropriate functions for specifics.

Example

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

from MuyGPyS.examples.regress import make_multivariate_regressor
from MuyGPyS.gp.deformation import F2, Isotropy

from MuyGPyS.gp.hyperparameter import Parameter

from MuyGPyS.gp.hyperparameter import AnalyticScale

from MuyGPyS.gp.kernels import RBF

from MuyGPyS.gp.noise import HomoscedasticNoise

from MuyGPyS.optimize import Bayes_optimize

train_features, train_responses = make_train() # stand-in function
nn_kwargs = {'nn_method": "exact", "algorithm": "ball_tree"}

k_args = [

(continues on next page)

46

Chapter 1. Citation

MuyGPyS, Release beta

(continued from previous page)

{
"kernel": RBF(
deformation=Isotropy(
metric=F2,
length_scale=Parameter(1.0, (le-2, le2))
)
Dy
"noise": HomoscedasticNoise(le-5),
"scale": AnalyticScale(),
1
{
"kernel": RBF(
deformation=Isotropy(
metric=F2,
length_scale=Parameter(1.0, (le-2, 1le2))
)
)
"noise": HomoscedasticNoise(le-5),
"scale": AnalyticScale(),
it

-1
>>> mmuygps, nbrs_lookup = make_multivariate_regressor(
train_features,
train_responses,
nn_count=30,
batch_count=200,
loss_fn=1oo0l_fn,
opt_fn=Bayes_optimize,
k_args=k_args,
nn_kwargs=nn_kwargs,
verbose=False,

Parameters

* train_features (ndarray) — A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

* train_targets (ndarray) — A matrix of shape (train_count, response_count)
whose rows consist of response vectors of the train data.

* nn_count (int) — The number of nearest neighbors to employ.

* batch_count (int) — The number of elements to sample batch for hyperparameter opti-
mization.

* loss_£fn (LossFn) — The loss method to use in hyperparameter optimization. Ignored if all
of the parameters specified by argument k_kwargs are fixed.

» opt_fn (OptimizeFn) — The optimization functor to use in hyperparameter optimization.
Ignored if all of the parameters specified by argument k_kwargs are fixed.

e k_args (Union[List[Dict], Tuple[Dict, ...]]) — A list of response_count dicts con-
taining kernel initialization keyword arguments. Each dict specifies parameters for the ker-
nel, possibly including noise and scale hyperparameter specifications and specifications for

1.4. examples 47

MuyGPyS, Release beta

specific kernel hyperparameters. If all of the hyperparameters are fixed or are not given
optimization bounds, no optimization will occur.

e nn_kwargs (Dict) — Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Ilirapper for the supported methods and their parameters.

» opt_kwargs (Dict) — Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

» verbose (bool) — If True, print summary statistics.

Return type
Tuple[MultivariateMuyGPS, NN_Wrapper]

Returns

* mmuygps — A Multivariate MuyGPs object with a separate (possibly trained) kernel function
associated with each response dimension.

* nbrs_lookup — A data structure supporting nearest neighbor queries into train_features.

MuyGPyS.examples.regress.make_regressor (train_features, train_targets, nn_count=30, batch_count=200,

loss_fn=<MuyGPyS.optimize.loss.LossFn object>,
opt_fn=<MuyGPyS.optimize.chassis.OptimizeFn object>,
k_kwargs={}, nn_kwargs={}, opt_kwargs={}, verbose=False)

Convenience function for creating MuyGPyS functor and neighbor lookup data structure.

Expected parameters include keyword argument dicts specifying kernel parameters and nearest neighbor param-
eters. See the docstrings of the appropriate functions for specifics.

Example

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>

from MuyGPyS.examples.regress import make_regressor
from MuyGPyS.gp.deformation import F2, Isotropy
from MuyGPyS.gp.hyperparameter import Parameter
from MuyGPyS.gp.hyperparameter import AnalyticScale
from MuyGPyS.gp.kernels import RBF

from MuyGPyS.gp.noise import HomoscedasticNoise
from MuyGPyS.optimize import Bayes_optimize

from MuyGPyS.examples.regress import make_regressor

train_features, train_responses = make_train() # stand-in function
nn_kwargs = {'nn_method": "exact", "algorithm": "ball_tree"}
k_kwargs = {
"kernel": RBF(
deformation=Isotropy(
metric=F2,
length_scale=Parameter(1.0, (le-2, 1le2))
)
),
"noise": HomoscedasticNoise(le-5),
"scale": AnalyticScale(),
}
muygps, hbrs_lookup = make_regressor(

train_features,
train_responses,
nn_count=30,

(continues on next page)

48

Chapter 1. Citation

MuyGPyS, Release beta

(continued from previous page)

batch_count=200,
loss_fn=1lool_fn,
opt_fn=Bayes_optimize,
k_kwargs=k_kwargs,
nn_kwargs=nn_kwargs,
verbose=False,

Parameters

* train features (ndarray) — A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

* train_targets (ndarray) — A matrix of shape (train_count, response_count)
whose rows consist of response vectors of the train data.

e nn_count (int) — The number of nearest neighbors to employ.

* batch_count (int) — The number of elements to sample batch for hyperparameter opti-
mization.

* loss_fn (LossFn) — The loss method to use in hyperparameter optimization. Ignored if all
of the parameters specified by argument k_kwargs are fixed.

» opt_fn (OptimizeFn) — The optimization functor to use in hyperparameter optimization.
Ignored if all of the parameters specified by argument k_kwargs are fixed.

* k_kwargs (Dict) — Parameters for the kernel, possibly including kernel type, deformation
function, noise and scale hyperparameter specifications, and specifications for kernel hyper-
parameters. See kernels for examples and requirements. If all of the hyperparameters are
fixed or are not given optimization bounds, no optimization will occur.

e nn_kwargs (Dict) — Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Iirapper for the supported methods and their parameters.

» opt_kwargs (Dict) — Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

» verbose (bool) — If True, print summary statistics.

Return type
Tuple[MuyGPS, NN_Wrapper]
Returns

muygps — A (possibly trained) MuyGPs object.

nbrs_lookup — A data structure supporting nearest neighbor queries into train_features.

MuyGPyS.examples.regress.regress_any (regressor, test_features, train_features, train_nbrs_lookup,

train_targets)

Simultaneously predicts the response for each test item.

Parameters

regressor (Union[MuyGPS, NultivariatelMuyGPS])— Regressor object.

test_features (ndarray) - Test observations of shape (test_count,
feature_count).

1.4. examples

49

MuyGPyS, Release beta

* train_features (ndarray) - Train observations of shape (train_count,
feature_count).

e train_nbrs_lookup (NN_Irapper) — Trained nearest neighbor query data structure.

* train_targets (ndarray) — Observed response for all training data of shape
(train_count, class_count).

Return type
Tuple[ndarray, ndarray, Dict[str, float]]

Returns

» means — The predicted response of shape (test_count, response_count,) for each of
the test examples.

* variances — The independent posterior variances for each of the test examples. Of shape
(test_count,) if the argument regressor is an instance of MuyGPyS.gp.muygps.
MuyGPS, and of shape (test_count, response_count) if regressor is an instance of
MuyGPyS.gp.muygps.MultivariateMuyGPS.

* timing (dict) — Timing for the subroutines of this function.

1.4.2 fast_posterior_mean

Resources and high-level API for a fast posterior mean inference workflow.

make_fast_regressor() is a high-level API for creating the necessary components for fast posterior mean inference.
make_fast_multivariate_regressor() isahigh-level API for creating the necessary components for fast posterior
mean inference with multiple outputs.

do_fast_posterior_mean() is a high-level api for executing a simple, generic fast posterior medan workflow given
data. It calls the maker APIs above and fast_posterior_mean_any().

MuyGPyS.examples. fast_posterior_mean.do_fast_posterior_mean(test features, train_features,
train_targets, nn_count=230,
batch_count=200,
loss_fn=<MuyGPyS.optimize.loss.LossFn
object>,
opt_fn=<MuyGPyS.optimize.chassis.OptimizeFn
object>, k_kwargs={}, nn_kwargs={},
opt_kwargs={}, verbose=False)

Convenience function initializing a model and performing fast posterior mean inference.

Expected parameters include keyword argument dicts specifying kernel parameters and nearest neighbor param-
eters. See the docstrings of the appropriate functions for specifics.

Also supports workflows relying upon multivariate models. In order to create a multivariate model, specify the
kern argument and pass a list of hyperparameter dicts to k_kwargs.

50 Chapter 1. Citation

MuyGPyS, Release beta

Example

>>> from MuyGPyS.testing.test_utils import _make_gaussian_data
>>> from MuyGPyS.examples.fast_posterior_mean import do_fast_posterior_mean
>>> from MuyGPyS.gp.deformation import F2, Isotropy
>>> from MuyGPyS.gp.hyperparameter import Parameter
>>> from MuyGPyS.gp.hyperparameter import AnalyticScale
>>> from MuyGPyS.gp.kernels import RBF
>>> from MuyGPyS.gp.noise import HomoscedasticNoise
>>> from MuyGPyS.optimize import Bayes_optimize
>>> from MuyGPyS.optimize.objective import mse_fn
>>> train_features, train_responses = make_train() # stand-in function
>>> test_features, test_responses = make_test() # stand-in function
>>> nn_kwargs = {"'nn_method": "exact", "algorithm": "ball_tree"}
>>> k_kwargs = {
"kernel": RBF(
deformation=Isotropy(
metric=F2,
length_scale=Parameter(1.0, (le-2, le2))

),
"noise": HomoscedasticNoise(le-5),
"scale": AnalyticScale(),
}
>>> (
. muygps, nbrs_lookup, predictions, precomputed_coefficients_matrix
.) = do_fast_posterior_mean(
test_features,
train_features,
train_responses,
nn_count=30,
batch_count=200,
loss_fn=1lool_fn,
opt_fn=Bayes_optimize,
k_kwargs=k_kwargs,
nn_kwargs=nn_kwargs,
verbose=False,

Parameters

» test_features (ndarray) — A matrix of shape (test_count, feature_count) whose
rows consist of observation vectors of the test data.

* train_features (ndarray) — A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

* train_targets (ndarray) — A matrix of shape (train_count, response_count)
whose rows consist of response vectors of the train data.

* nn_count (int) — The number of nearest neighbors to employ.

* batch_count (int) — The number of elements to sample batch for hyperparameter opti-
mization.

1.4. examples 51

MuyGPyS, Release beta

* loss_£fn (LossFn) — The loss functor to use in hyperparameter optimization. Ignored if all
of the parameters specified by argument k_kwargs are fixed.

» opt_£n (OptimizeFn) — The optimization functor to use in hyperparameter optimization.
Ignored if all of the parameters specified by argument k_kwargs are fixed.

* k_kwargs (Union[Dict, List[Dict], Tuple[Dict, ...]]) — If given a list or tu-
ple of length response_count, assume that the elements are dicts containing ker-
nel initialization keyword arguments for the creation of a multivariate model (see
make_multivariate_regressor()). If given a dict, assume that the elements are key-
word arguments to a MuyGPs model (see make_regressor()).

* nn_kwargs (Dict) — Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

* opt_kwargs (Dict) — Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

» verbose (bool) — If True, print summary statistics.

Return type
Tuple[ndarray, NN_Wrapper, ndarray, ndarray, Dict]

Returns
* muygps — A (possibly trained) MuyGPs object.
* nbrs_lookup — A data structure supporting nearest neighbor queries into train_features.
* predictions — The predicted response associated with each test observation.

* precomputed_coefficients_matrix — A matrix of shape (train_count, nn_count) whose
rows list the precomputed coefficients for each nearest neighbors set in the training data.

* timing — A dictionary containing timings for the training, precomputation, nearest neighbor
computation, and prediction.

MuyGPyS.examples. fast_posterior_mean.fast_posterior_mean_any (muygps, test_features, train_features,
nbrs_lookup, train_targets)

Convenience function performing fast posterior mean inference using a pre-trained model.
Also supports workflows relying upon multivariate models.
Parameters
* muygps (Union[MuyGPS, MultivariateMuyGPS]) — A (possibly trained) MuyGPS object.

» test_features (ndarray) — A matrix of shape (test_count, feature_count) whose
rows consist of observation vectors of the test data.

e train_features (ndarray) — A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

* nbrs_lookup (NN_irapper) — A data structure supporting nearest neighbor queries into
train_features.

* train_targets (ndarray) — A matrix of shape (train_count, response_count)
whose rows consist of response vectors of the train data.

Return type
Tuple[ndarray, ndarray, Dict]

Returns

* posterior_mean — The predicted response associated with each test observation.

52 Chapter 1. Citation

MuyGPyS, Release beta

* precomputed_coefficients_matrix — A matrix of shape (train_count, nn_count) whose
rows list the precomputed coefficients for each nearest neighbors set in the training data.

* timing — A dictionary containing timings for the training, precomputation, nearest neighbor
computation, and prediction.

MuyGPyS.examples. fast_posterior_mean.make_fast_multivariate_regressor (mmuygps, nbrs_lookup,
train_features,
train_targets)

Convenience function for creating precomputed coefficient matrix and neighbor lookup data structure.
Parameters
* muygps — A trained MultivariateMuyGPS object.

* nbrs_lookup (NN_iirapper) — A data structure supporting nearest neighbor queries into
train_features.

e train_features (ndarray) — A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

* train_targets (ndarray) — A matrix of shape (train_count, response_count)
whose rows consist of response vectors of the train data.

Return type
Tuple[ndarray, ndarray]

Returns

* precomputed_coefficients_matrix — A matrix of shape (train_count, nn_count) whose
rows list the precomputed coefficients for each nearest neighbors set in the training data.

* nn_indices — An array supporting nearest neighbor queries.

MuyGPyS.examples. fast_posterior_mean.make_fast_regressor (muygps, nbrs_lookup, train_features,
train_targets)

Convenience function for creating precomputed coefficient matrix and neighbor lookup data structure.
Parameters
* muygps (MuyGPS) — A (possibly trained) MuyGPS object.

* nbrs_lookup (NN_iirapper) — A data structure supporting nearest neighbor queries into
train_features.

* train_ features (ndarray) — A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

e train_targets (ndarray) — A matrix of shape (train_count, response_count)
whose rows consist of response vectors of the train data.

Return type
Tuple[ndarray, ndarray]

Returns

o precomputed_coefficients_matrix — A matrix of shape (train_count, nn_count) whose
rows list the precomputed coefficients for each nearest neighbors set in the training data.

* nn_indices — A numpy.ndarrray supporting nearest neighbor queries.

1.4. examples 53

MuyGPyS, Release beta

1.4.3 classify

Resources and high-level API for a simple classification workflow.

make_classifier() is a high-level API for creating and training MuyGPyS. gp.muygps . MuyGPS objects for classi-
fication. make_multivariate_classifier() is a high-level API for creating and training MuyGPyS . gp .muygps.
MultivariateMuyGPS objects for classification.

do_classify() is ahigh-level api for executing a simple, generic classification workflow given data. It calls the maker
APIs above and classify_any().

MuyGPyS.examples.classify.classify_any(surrogate, test_features, train_features, train_nbrs_lookup,

train_labels)

Simulatneously predicts the surrogate regression means for each test item.

Parameters
* surrogate (Union[MuyGPS, MultivariatelMuyGPS]) — Surrogate regressor.

» test_features (ndarray) - Test observations of shape (test_count,
feature_count).

* train_features (ndarray) - Train observations of shape (train_count,
feature_count).

e train_nbrs_lookup (NN_Irapper) — Trained nearest neighbor query data structure.

e train_labels (ndarray) — One-hot encoding of class labels for all training data of shape
(train_count, class_count).

Return type
Tuple[ndarray, Dict[str, float]]

Returns

* predictions — The surrogate predictions of shape (test_count, class_count) for each
test observation.

* timing — Timing for the subroutines of this function.

MuyGPyS.examples.classify.do_classify(test features, train_features, train_labels, nn_count=30,

batch_count=200, loss_fn=<MuyGPyS.optimize.loss.LossFn
object>, opt_fn=<MuyGPyS.optimize.chassis.OptimizeFn object>,
k_kwargs={}, nn_kwargs={}, opt_kwargs={}, verbose=False)

Convenience function for initializing a model and performing surrogate classification.

Expected parameters include keyword argument dicts specifying kernel parameters and nearest neighbor param-
eters. See the docstrings of the appropriate functions for specifics.

Example

>>> import numpy as np

>>> from MuyGPyS.examples.classify import do_classify

>>> from MuyGPyS.gp.deformation import F2, Isotropy

>>> from MuyGPyS.gp.hyperparameter import Parameter

>>> from MuyGPyS.gp.kernels import RBF

>>> from MuyGPyS.gp.noise import HomoscedasticNoise

>>> from MuyGPyS.optimize import Bayes_optimize

>>> train_features, train_responses = make_train() # stand-in function

(continues on next page)

54

Chapter 1. Citation

MuyGPyS, Release beta

(continued from previous page)

>>> test_features, test_responses = make_test() # stand-in function
>>> nn_kwargs = {"nn_method": "exact", "algorithm": "ball_tree"}
>>> k_kwargs = {

"kernel": RBF(

)

deformation=Isotropy(

metric=F2,

length_scale=Parameter(0.5, (0.01, 1)),
s

"noise": HomoscedasticNoise(le-5),

¥

>>> muygps, nbrs_lookup, surrogate_predictions = do_classify(

=)

test_features,
train_features,
train_responses,
nn_count=30,
batch_count=200,
loss_fn=cross_entropy_ifn,
opt_fn=Bayes_optimize,
k_kwargs=k_kwargs,
nn_kwargs=nn_kwargs,
verbose=False,

>>> predicted_labels = np.argmax(surrogate_predictions, axis=1)
>>> true_labels = np.argmax(test_features, axis=1)

>>> acc = np.mean(predicted_labels == true_labels)

>>> print(f"obtained accuracy {acc}")

obtained accuracy: 0.973...

Parameters

test_features (ndarray) — A matrix of shape (test_count, feature_count) whose
rows consist of observation vectors of the test data.

train_features (ndarray) — A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

train_labels (ndarray) — A matrix of shape (train_count, response_count)
whose rows consist of label vectors for the training data.

nn_count (int) — The number of nearest neighbors to employ.
batch_count (int) — The batch size for hyperparameter optimization.

loss_£n (LossFn) — The loss functor to use in hyperparameter optimization. Ignored if all
of the parameters specified by k_kwargs are fixed.

opt_£fn (OptimizeFn) — The optimization functor to use in hyperparameter optimization.
Ignored if all of the parameters specified by argument k_kwargs are fixed.

k_kwargs (Union[Dict, List[Dict], Tuple[Dict, .. .]]) — Parameters for the kernel, pos-
sibly including kernel type, deformation function, noise and scale hyperparameter specifica-
tions, and specifications for kernel hyperparameters. If all of the hyperparameters are fixed
or are not given optimization bounds, no optimization will occur. If "k_kwargs" is a list of
such dicts, will create a multivariate classifier model.

1.4. examples

55

MuyGPyS, Release beta

* nn_kwargs (Dict) — Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

* opt_kwargs (Dict) — Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

» verbose (bool) — If True, print summary statistics.

Return type
Tuple[Union[MuyGPS, MultivariateMuyGPS], NN_Wrapper, ndarray]

Returns
* muygps — A (possibly trained) MuyGPs object.
* nbrs_lookup — A data structure supporting nearest neighbor queries into train_features.

* surrogate_predictions — A matrix of shape (test_count, response_count) whose rows
indicate the surrogate predictions of the model. The predicted classes are given by the indices
of the largest elements of each row.

MuyGPyS.examples.classify.make_classifier (train_features, train_labels, nn_count=30, batch_count=200,

loss_fn=<MuyGPyS.optimize.loss.LossFn object>,
opt_fn=<MuyGPyS.optimize.chassis.OptimizeFn object>,
k_kwargs={}, nn_kwargs={}, opt_kwargs={},
verbose=Fualse)

Convenience function for creating MuyGPyS functor and neighbor lookup data structure.

Expected parameters include keyword argument dicts specifying kernel parameters and nearest neighbor param-
eters. See the docstrings of the appropriate functions for specifics.

Example

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>

from MuyGPyS.examples.regress import make_classifier
from MuyGPyS.gp.deformation import F2, Isotropy

from MuyGPyS.gp.hyperparameter import Parameter

from MuyGPyS.gp.kernels import RBF

from MuyGPyS.gp.noise import HomoscedasticNoise

from MuyGPyS.optimize import Bayes_optimize

from MuyGPyS.examples.classify import make_classifier

train_features, train_responses = make_train() # stand-in function
nn_kwargs = {'nn_method": "exact", "algorithm": "ball_tree"}
k_kwargs = {
"kernel": RBF(
deformation=Isotropy(
metric=F2,
length_scale=Parameter(1.0, (le-2, 1le2))
)
),
"noise": HomoscedasticNoise(le-5),
}
muygps, nbrs_lookup = make_classifier(

train_features,
train_responses,
nn_count=30,
batch_count=200,

(continues on next page)

56

Chapter 1. Citation

MuyGPyS, Release beta

(continued from previous page)
loss_fn=cross_entropy_fn,
opt_fn=Bayes_optimize,
k_kwargs=k_kwargs,
nn_kwargs=nn_kwargs,
verbose=False,

Parameters

* train_ features (ndarray) — A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

e train_labels (ndarray) — A matrix of shape (train_count, class_count) whose
rows consist of one-hot class label vectors of the train data.

* nn_count (int) — The number of nearest neighbors to employ.

* batch_count (int) — The number of elements to sample batch for hyperparameter opti-
mization.

* loss_fn (LossFn) — The loss functor to use in hyperparameter optimization. Ignored if all
of the parameters specified by argument k_kwargs are fixed.

» opt_fn (OptimizeFn) — The optimization functor to use in hyperparameter optimization.
Ignored if all of the parameters specified by argument k_kwargs are fixed.

* k_kwargs (Dict) — Parameters for the kernel, possibly including kernel type, deformation
function, noise and scale hyperparameter specifications, and specifications for kernel hyper-
parameters. See kernels for examples and requirements. If all of the hyperparameters are
fixed or are not given optimization bounds, no optimization will occur.

* nn_kwargs (Dict) — Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

* opt_kwargs (Dict) — Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

» verbose (bool) — Boolean If True, print summary statistics.

Return type
Tuple[MuyGPS, NN_Wrapper]

Returns
* muygps — A (possibly trained) MuyGPs object.

* nbrs_lookup — A data structure supporting nearest neighbor queries into train_features.

MuyGPyS.examples.classify.make_multivariate_classifier (train_features, train_labels, nn_count=30,
batch_count=200,
loss_fn=<MuyGPyS.optimize.loss.LossFn
object>,
opt_fn=<MuyGPyS.optimize.chassis.OptimizeFn
object>, k_args=[], nn_kwargs={},
opt_kwargs={}, verbose=False)

Convenience function for creating MuyGPyS functor and neighbor lookup data structure.

Expected parameters include keyword argument dicts specifying kernel parameters and nearest neighbor param-
eters. See the docstrings of the appropriate functions for specifics.

1.4. examples 57

MuyGPyS, Release beta

Example

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

-1

>>>

from MuyGPyS.examples.classify import make_multivariate_classifier

from MuyGPyS.gp.deformation import F2, Isotropy
from MuyGPyS.gp.hyperparameter import Parameter
from MuyGPyS.gp.kernels import RBF

from MuyGPyS.gp.noise import HomoscedasticNoise

from MuyGPyS.optimize import Bayes_optimize
train_features, train_responses = make_train() # stand-in function
nn_kwargs = {"nn_method": "exact", "algorithm": "ball_tree"}
k_args = [
{
"kernel": RBF(
deformation=Isotropy(
metric=F2,
length_scale=Parameter(0.5, (0.01, 1)),
)
)
"noise": HomoscedasticNoise(le-5),
3
{
"kernel": RBF(
deformation=Isotropy(
metric=F2,
length_scale=Parameter(0.5, (0.01, 1)),
)
)
"noise": HomoscedasticNoise(le-5),
I
mmuygps, nbrs_lookup = make_multivariate_classifier(

train_features,
train_responses,
nn_count=30,
batch_count=200,
loss_fn=cross_entropy_fn,
opt_fn=Bayes_optimize,
k_args=k_args,
nn_kwargs=nn_kwargs,
verbose=False,

Parameters

* train_ features (ndarray) — A matrix of shape (train_count, feature_count)

whose rows consist of observation vectors of the train data.

* train_labels (ndarray) — A matrix of shape (train_count, class_count) whose

rows consist of one-hot encoded label vectors of the train data.

* nn_count (int) — The number of nearest neighbors to employ.

* batch_count (int) — The number of elements to sample batch for hyperparameter opti-

mization.

58

Chapter 1. Citation

MuyGPyS, Release beta

* loss_£fn (LossFn) — The loss functor to use in hyperparameter optimization. Ignored if all
of the parameters specified by argument k_kwargs are fixed.

» opt_£n (OptimizeFn) — The optimization functor to use in hyperparameter optimization.
Ignored if all of the parameters specified by argument k_kwargs are fixed.

e k_args (Union[List[Dict], Tuple[Dict, ...]]) — A list of response_count dicts con-
taining kernel initialization keyword arguments. Each dict specifies parameters for the ker-
nel, possibly including noise and scale hyperparameter specifications and specifications for
specific kernel hyperparameters. If all of the hyperparameters are fixed or are not given
optimization bounds, no optimization will occur.

* nn_kwargs (Dict) — Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

* opt_kwargs (Dict) — Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

» verbose (bool) — If True, print summary statistics.

Return type
Tuple[MultivariateMuyGPS, NN_Wrapper]

Returns
* muygps — A (possibly trained) MuyGPs object.

* nbrs_lookup — A data structure supporting nearest neighbor queries into train_features.

1.4.4 two-class classify with uq

Resources and high-level API for a two-class classification with UQ workflow.

Implements a two-class classification workflow with a bespoke uncertainty quantification tuning method.
[muyskens2021star] describes this method and its application to a star-galaxy image separation problem.

do_classify_uqQ) is a high-level api for executing a two-class classification workflow with the uncertainty quan-
tification. It calls the maker APIs MuyGPyS. examples.classify.make_classifier() and MuyGPyS.examples.
classify.make_multivariate_classifier() to create and train models, and performs the inference using the
functions classify_two_class_uq(), make_masks(), and train_two_class_interval(). do_uqg() takes the
true labels of the test data and the surrgoate_prediction and masks outputs to report the statistics of the confidence
intervals associated with each supplied objective function.

MuyGPyS .examples.two_class_classify_uq.classify_two_class_uq(surrogate, test_features,
train_features, train_nbrs_lookup,
train_labels)

Simultaneously predicts the surrogate means and variances for each test item under the assumption of binary
classification.

Parameters
* surrogate (Union[MuyGPS, MultivariatelMuyGPS])— Surrogate regressor.

» test_features (ndarray) - Test observations of shape (test_count,
feature_count).

* train_features (ndarray) - Train observations of shape (train_count,
feature_count).

e train_nbrs_lookup (NN_Irapper) — Trained nearest neighbor query data structure.

1.4. examples 59

MuyGPyS, Release beta

* train_labels (ndarray) — One-hot encoding of class labels for all training data of shape
(train_count, class_count).

Return type
Tuple[ndarray, ndarray, Dict[str, float]]

Returns
* means — The surrogate predictions for each test observation of shape (test_count, 2).
* variances — The posterior variances for each test observation of shape (test_count,)
* timing — Timing for the subroutines of this function.

MuyGPyS.examples.two_class_classify_uq.do_classify_uq(test features, train_features, train_labels,
nn_count=30, opt_batch_count=200,
uq_batch_count=500,
loss_fn=<MuyGPyS.optimize.loss.LossFn
object>,
opt_fn=<MuyGPyS.optimize.chassis.OptimizeFn
object>, uq_objectives=[<function
<lambda>>, <function <lambda>>,
<function <lambda>>, <function
<lambda>>, <function <lambda>>],
k_kwargs={}, nn_kwargs={}, opt_kwargs={},
verbose=False)

Convenience function for initializing a model and performing two-class surrogate classification, while tuning
uncertainty quantification.

Performs the classification workflow with uncertainty quantification tuning as described in [muyskens202 I star].

Expected parameters include keyword argument dicts specifying kernel parameters and nearest neighbor param-
eters. See the docstrings of the appropriate functions for specifics.

Example

>>> import numpy as np
>>> from MuyGPyS.examples.regress import do_classify_uq, do_ugq
>>> train_features, train_responses = make_train() # stand-in function
>>> test_features, test_responses = make_test() # stand-in function
>>> nn_kwargs = {'nn_method": "exact", "algorithm": "ball_tree"}
>>> k_kwargs = {
"kernel": RBF(
deformation=Isotropy(
metric=F2,
length_scale=Parameter(0.5, (0.01, 1)),
)
)
"noise": HomoscedasticNoise(le-5),
}
>>> muygps, nbrs_lookup, surrogate_predictions = do_classify_uq(
test_features,
train_features,
train_responses,
nn_count=30,
batch_count=200,

(continues on next page)

60 Chapter 1. Citation

MuyGPyS, Release beta

(continued from previous page)

loss_fn=cross_entropy_fn,
opt_fn=Bayes_optimize,
k_kwargs=k_kwargs,
nn_kwargs=nn_kwargs,
.. verbose=False,

<)
>>> accuracy, uq = do_ug(surrogate_predictions, test_responses, masks)
>>> print(f"obtained accuracy {accuracy}")
obtained accuracy: 0.973...
>>> print(f"obtained mask uq : \n{uq}!")
obtained mask uq :
[[8.21000000e+02 8.53836784e-01 9.87144569e-01]
[8.59000000e+02 8.55646100e-01 9.87528717e-01]
[1.03500000e+03 8.66666667e-01 9.88845510e-01]
[1.03500000e+03 8.66666667e-01 9.88845510e-01]
[5.80000000e+01 6.72413793e-01 9.77972239e-01]]

Parameters

» test_features (ndarray) — A matrix of shape (test_count, feature_count) whose
rows consist of observation vectors of the test data.

* train features (ndarray) — A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

e train_labels (ndarray) — A matrix of shape (train_count, response_count)
whose rows consist of label vectors for the training data.

* nn_count (int) — The number of nearest neighbors to employ.
» opt_batch_count (int) — The batch size for hyperparameter optimization.
* uq_batch_count (int) — The batch size for uncertainty quantification calibration.

* loss_fn (LossFn) — The loss functor to use in hyperparameter optimization. Ignored if all
of the parameters specified by k_kwargs are fixed.

» opt_fn (OptimizeFn) — The optimization functor to use in hyperparameter optimization.
Ignored if all of the parameters specified by argument k_kwargs are fixed.

* uq_objectives (Union[List[Callable], Tuple[Callable, ...]]) — list(Callable) List
of objective_count’ functions taking four arguments: bit masks “alpha
and beta - the type 1 and type 2 error counts at each grid location, respectively - and
the numbers of correctly and incorrectly classified training examples. Used to tune the
scale parameter o2 for setting confidence intervals. See MuyGPyS.examples.classify.
example_lambdas for examples.

* k_kwargs (Dict) — Parameters for the kernel, possibly including kernel type, deformation
function, noise and scale hyperparameter specifications, and specifications for kernel hyper-
parameters. If all of the hyperparameters are fixed or are not given optimization bounds, no
optimization will occur.

e nn_kwargs (Dict) — Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

* opt_kwargs (Dict) — Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

» verbose (bool) — If True, print summary statistics.

1.4. examples 61

MuyGPyS, Release beta

Return type
Tuple[MuyGPS, NN_Wrapper, ndarray, ndarray]

Returns
* muygps — A (possibly trained) MuyGPs object.
* nbrs_lookup — A data structure supporting nearest neighbor queries into train_features.

* surrogate_predictions — A matrix of shape (test_count, response_count) whose rows
indicate the surrogate predictions of the model. The predicted classes are given by the indices
of the largest elements of each row.

* masks — A matrix of shape (objective_count, test_count) whose rows consist of in-
dex masks into the training set. Each True index includes 0.0 within the associated predic-
tion’s confidence interval.

MuyGPyS.examples.two_class_classify_uq.do_uq(surrogate_predictions, test_labels, masks)
Convenience function performing uncertainty quantification given predicted labels and ground truth for a given
set of confidence interval scales.

Parameters

» predictions — A matrix of shape (test_count, class_count) whose rows consist of
the surrogate predictions.

* test_labels (ndarray) — A matrix of shape (test_count, class_count) listing the
true one-hot encodings of each test observation’s class.

* masks (ndarray) — A matrix of shape (objective_count, test_count) whose rows
consist of index masks into the training set. Each True index includes 8.0 within the asso-
ciated prediction’s confidence interval.

Return type
Tuple[float, ndarray]

Returns
* accuracy — The accuracy over all of the test data.

* ug — A matrix of shape (objective_count, 3) listing the uncertainty quantification asso-
ciated with each input mask (i.e. each objective function). The first column is the total num-
ber of ambiguous samples, i.e. those whose confidence interval contains the mid_value,
usually 0.0. The second column is the accuracy of the ambiguous samples. The third col-
umn is the accuracy of the unambiguous samples.

MuyGPyS.examples.two_class_classify_uq.make_masks (predictions, cutoffs, variances, mid_value)

Compute boolean masks over all of the test data indicating which test indices are considered ambiguous
Parameters

e predictions (ndarray)— A matrix of shape (test_count, class_count) whose rows
consist of the surrogate predictions.

» cutoffs (ndarray) — A vector of shape (objective_count,) indicating the confidence
interval scale parameter o2 that minimizes each of the considered objective function.

» variances (ndarray) — A vector of shape (test_count, 1) indicating the diagonal pos-
terior variance of each test item.

* mid_value (float) — The discriminating value determining absolute uncertainty. Usually
0.00r0.5.

62 Chapter 1. Citation

MuyGPyS, Release beta

Return type
ndarray

Returns
A matrix of shape (objective_count, test_count) whose rows consist of index masks into
the training set. Each True index includes mid_value within the associated prediction’s confi-
dence interval.

MuyGPyS.examples.two_class_classify_uq.train_two_class_interval (surrogate, batch_indices,
batch_nn_indices, train_features,
train_responses, train_labels,
objective_fns)

For 2-class classification problems, get estimate of the confidence interval scaling parameter.
Parameters
* surrogate (MuyGPS) — Surrogate regressor.
* batch_indices (ndarray) — Batch observation indices of shape (batch_count).

* batch_nn_indices (ndarray) - Indices of the nearest neighbors of shape
(batch_count, nn_count).

* train — The full training data matrix of shape (train_count, feature_count).

* train_responses (ndarray) — One-hot encoding of class labels for all training data of
shape (train_count, class_count).

e train_labels (ndarray) — List of class labels for all training data of shape
(train_count,).

e objective_fns (Union[List[Callable], Tuple[Callable, ...]]) — A collection of
objective_count functions taking the four arguments bit masks alpha and beta - the type 1
and type 2 error counts at each grid location, respectively - and the numbers of correctly and
incorrectly classified training examples. Each objective function effervesces a cutoff value
to calibrate UQ for class decision-making.

Return type
ndarray

Returns
A vector of shape (objective_count) indicating the confidence interval scale parameter that
minimizes each considered objective function.

1.4.5 muygps_torch

Resources and high-level API for a deep kernel learning with MuyGPs.
train_deep_kernel_muygps () is a high-level API for training deep kernel MuyGPs models for regression.
predict_model () is a high-level API for generating predictions at test locations given a trained model.

MuyGPyS. examples.muygps_torch.predict_model (model, test_features, train_features, train_responses,
nbrs_lookup, nn_count)

Generate predictions using a PyTorch model containing a MuyGPyS. torch.muygps_layer.MuyGPs_layer
layer or a MuyGPyS . torch.muygps_layer.MultivariateMuyGPs_layer layer in its structure. Note that the
custom PyTorch layers for MuyGPs objects only support the Matern kernel. Support for more kernels will be
added in future releases.

1.4. examples 63

MuyGPyS, Release beta

Example

>>> #model must be defined as a PyTorch model inheriting from

. #torch.nn.Module. Must have two components: model.embedding
... #(e.g., a neural net) and another component model.GP_layer.
>>> from MuyGPyS.testing.test_utils import _make_gaussian_data
>>> from MuyGPyS.neighbors import NN_Wrapper
>>> train, test = _make_gaussian_data(10000, 1000, 100, 10)
>>> nn_count = 10
>>> nbrs_lookup = NN_Wrapper(train['input'], nn_count, nn_method="hnsw")
>>> predictions, variances = predict_model/(

. model,

. torch.from_numpy(test['input']),

. torch.from_numpy(train['input']),

. torch.from_numpy(train['output']),

. nbrs_lookup,

. nn_count)

Parameters

» model — A custom PyTorch.nn.Module object containing an embedding component and one
MuyGPs_layer or MultivariateMuyGPS_layer layer.

» test_features (Tensor) — A torch.Tensor of shape (test_count, feature_count)
containing the test features to be regressed.

» train_features (Tensor)— A torch.Tensor of shape (train_count, feature_count)
containing the training features.

train_responses (Tensor) - A torch.Tensor of shape (train_count,
response_count) containing the training responses corresponding to each feature.

* nbrs_lookup (NN_Iiirapper) — A NN_Wrapper nearest neighbor lookup data structure.
Returns

* predictions — A torch.Tensor of shape (test_count, response_count) whose rows are
the predicted response for each of the given test feature.

* variances — A torch.Tensor of shape (batch_count,) consisting of the diagonal elements
of the posterior variance, or a matrix of shape (batch_count, response_count) for a
multidimensional response.

MuyGPyS. examples.muygps_torch.predict_multiple_model (model, test features, train_features,
train_responses, nbrs_lookup, nn_count)

Generate predictions using a PyTorch model containing a MuyGPyS.torch.muygps_layer.
MultivariateMuyGPs_layer in its structure. Meant for the case in which there is more than one GP
model used to model multiple outputs. Note that the custom PyTorch MultivariateMuyGPs_layer objects only

support the Matern kernel. Support for more kernels will be added in future releases.
Parameters

* model — A custom PyTorch.nn.Module object containing an embedding component and one
MuyGPyS.torch.muygps_layer.MultivariateMuyGPs_layer layer.

» test_features (Tensor) — A torch.Tensor of shape (test_count, feature_count)
containing the test features to be regressed.

64 Chapter 1. Citation

MuyGPyS, Release beta

* train_features (Tensor)— A torch.Tensor of shape (train_count, feature_count)
containing the training features.

* train_responses (Tensor) - A torch.Tensor of shape (train_count,
response_count) containing the training responses corresponding to each feature.

* nbrs_lookup (NN_Iiirapper) — A NN_Wrapper nearest neighbor lookup data structure.
Returns

* predictions — A torch.Tensor of shape (test_count, response_count) whose rows are
the predicted response for each of the given test feature.

* variances — A torch.Tensor of shape (batch_count,) consisting of the diagonal elements
of the posterior variance, or a matrix of shape (batch_count, response_count) for a
multidimensional response.

MuyGPyS.examples.muygps_torch.predict_single_model (model, test_features, train_features,
train_responses, nbrs_lookup, nn_count)

Generate predictions using a PyTorch model containing at least one MuyGPyS.torch.muygps_layer.
MuyGPs_layer in its structure. Note that the custom PyTorch MuyGPs_layer objects only support the Matern
kernel. Support for more kernels will be added in future releases.

Parameters

* model — A custom PyTorch.nn.Module object containing an embedding component and one
MuyGPyS. torch.muygps_layer.MuyGPs_layer layer.

» test_features (Tensor) — A torch.Tensor of shape (test_count, feature_count)
containing the test features to be regressed.

e train_features (Tensor)— A torch.Tensor of shape (train_count, feature_count)
containing the training features.

e train_responses (Tensor) - A torch.Tensor of shape (train_count,
response_count) containing the training responses corresponding to each feature.

* nbrs_lookup (NN_Wrapper) — A NN_Wrapper nearest neighbor lookup data structure.
Returns

* predictions — A torch.Tensor of shape (test_count, response_count) whose rows are
the predicted response for each of the given test feature.

* variances — A torch.Tensor of shape (batch_count,response_count) shape consisting
of the diagonal elements of the posterior variance.

MuyGPyS.examples.muygps_torch.train_deep_kernel_muygps (model, train_features, train_responses,
batch_indices, nbrs_lookup,
training_iterations=10,
optimizer_method=<class
‘torch.optim.adam.Adam'>,
learning_rate=0.001,
scheduler_decay=0.95, loss_function="lool’,
update_frequency=1, verbose=False,
nn_kwargs={})

Train a PyTorch model containing an embedding component and a MuyGPyS.torch.muygps_layer.
MuyGPs_layer layer or a MuyGPyS . torch.muygps_layer. MultivariateMuyGPs_layer layer in its struc-
ture. Note that the custom PyTorch layers for MuyGPs models only support the Matern kernel. Support for more
kernels will be added in future releases.

1.4. examples 65

MuyGPyS, Release beta

Example

>>>

#model must be defined as a PyTorch model inheriting from

. #torch.nn.Module. Must have two components: model.embedding

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>

. #(e.g., a neural net) and another component model.GP_layer.

from MuyGPyS.testing.test_utils import _make_gaussian_data

from MuyGPyS.neighbors import NN_Wrapper

from MuyGPyS.examples.muygps_torch import train_deep_kernel_muygps
from MuyGPyS._src.optimize.loss import _lool_fn as lool_fn

train, test = _make_gaussian_data (10000, 1000, 100, 10)

nn_count = 10

nbrs_lookup = NN_Wrapper(train['input'], nn_count, nn_method="hnsw")
batch_count = 100

train_count = 10000

batch_indices, batch_nn_indices = sample_batch(nbrs_lookup,

. batch_count, train_count)

nbrs_struct, model_trained = train_deep_kernel_muygps(

. model=model,

. train_features=torch. from_numpy(train['input']),
. train_responses=torch. from_numpy(train['output']),
. batch_indices=torch. from_numpy(batch_indices),

. nbrs_lookup=nbrs_lookup,

. training_iterations=10,

. optimizer_method=torch.optim.Adam,

. learning_rate=1le-3,

. scheduler_decay=0.95,

. loss_function=1oo0l_fn,

. update_frequency=1)

Parameters

* model — A custom PyTorch.nn.Module object containing at least one embedding layer and
one MuyGPs_layer or MultivariateMuyGPS_layer layer.

* train_features (Tensor)— A torch.Tensor of shape (train_count, feature_count)
containing the training features.

* train responses (Tensor) - A torch.Tensor of shape (train_count,
response_count) containing the training responses corresponding to each feature.

* batch_indices (Tensor) — A torch.Tensor of shape (batch_count,) containing the in-
dices of the training batch.

» nbrs_lookup (NN_iirapper) — A NN_Wrapper nearest neighbor lookup data structure.
* training_iterations — The number of training iterations to be used in training.

» method (optimizer)— An optimization method from the torch.optim class.

* learning_rate — The learning rate to be applied during training.

» schedule_decay — The exponential decay rate to be applied to the learning rate.

» function (loss) — The loss function to be used in training. Defaults to “lool” for leave-
one-out likelihood. Other options are “mse” for mean-squared error, “ce” for cross entropy
loss, “bce” for binary cross entropy loss, and “11” for L1 loss.

66

Chapter 1. Citation

MuyGPyS, Release beta

» update_frequency — Tells the training procedure how frequently the nearest neighbor
structure should be updated. An update frequency of n indicates that every n epochs the
nearest neighbor structure should be updated.

» verbose - Indicates whether or not to include print statements during training.

* nn_kwargs (Dict) — Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors. NN_Wrapper for the supported methods and their parameters.

Returns

* nbrs_lookup — A NN_Wrapper object containing the nearest neighbors of the embedded
training data.

* model — A trained deep kernel MuyGPs model.

MuyGPyS.examples.muygps_torch.update_nearest_neighbors (model, train_features, train_responses,

batch_indices, nn_count, nn_kwargs={})

Update the nearest neighbors after deformation via a PyTorch model containing an embedding compo-
nent and a MuyGPyS.torch.muygps_layer.MuyGPs_layer layer or a MuyGPyS.torch.muygps_layer.
MultivariateMuyGPs_layer layer in its structure.

Example

>>>

#model must be defined as a PyTorch model inheriting from

. #torch.nn.Module. Must have two components: model.embedding

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

. #(e.g., a neural net) and another component model.GP_layer.

from MuyGPyS.testing.test_utils import _make_gaussian_data

from MuyGPyS.neighbors import NN_Wrapper

from MuyGPyS.examples.muygps_torch import update_nearest_neighbors

train, test = _make_gaussian_data(10000, 1000, 100, 10)

nn_count = 10

batch_count 100

train_count = 10000

batch_indices, batch_nn_indices = sample_batch(nbrs_lookup, batch_count, train_

—.count)

>>>

nbrs_struct, model_trained = update_nearest_neighbors(

. model=model,

. train_features=torch. from_numpy(train['input']),

. train_responses=torch. from_numpy(train['output']),
. batch_indices=torch. from_numpy(batch_indices),

. hn_count=nn_count,)

Parameters

* model — A custom PyTorch.nn.Module object containing at least one embedding layer and
one MuyGPs_layer or MultivariateMuyGPS_layer layer.

* train_features (Tensor)— A torch.Tensor of shape (train_count, feature_count)
containing the training features.

e train_responses (Tensor) - A torch.Tensor of shape (train_count,
response_count) containing the training responses corresponding to each feature.

* batch_indices (Tensor) — A torch.Tensor of shape (batch_count,) containing the in-
dices of the training batch.

1.4. examples 67

MuyGPyS, Release beta

* nn_count (int) — A torch.int64 giving the number of nearest neighbors.

e nn_kwargs (Dict) — Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_lirapper for the supported methods and their parameters.

Returns

* nbrs_lookup — A NN_Wrapper object containing the updated nearest neighbors of the em-
bedded training data.

* model — A deep kernel MuyGPs model with updated nearest neighbors.

1.5 torch

MuyGPyS.torch module reference.

1.5.1 muygps_layer

MuyGPs PyTorch implementation

class MuyGPyS.torch.muygps_layer.MuyGPs_layer (muygps_model, batch_indices, batch_nn_indices,

batch_targets, batch_nn_targets)

MuyGPs model written as a custom PyTorch layer using nn.Module.

Implements the MuyGPs algorithm as articulated in [muyskens202 1muygps]. See documentation on MuyGPs
class for more detail.

The MuyGPs_layer class only supports the Matern kernel currently. More kernels will be added to the torch
module of MuyGPs in future releases.

PyTorch does not currently support the Bessel function required to compute the Matern kernel for non-special
case smoothness values of v, e.g. 1/2, 3/2, 5/2, and co. The MuyGPs layer allows the lengthscale parameter p to
be trained (provided an initial value by the user) as well as the homoscedastic 72 noise prior variance.

The MuyGPs layer returns the posterior mean, posterior variance, and a vector of o2 indicating the scale param-
eter associated with the posterior variance of each dimension of the response.

Example

>>> from MuyGPyS.torch.muygps_layer import MuyGPs_layer
>>> muygps_model = MuyGPS(
Matern(
smoothness=ScalarParam(0.5),
deformation=Isotropy(
metric=12,
length_scale=ScalarParam(1.0)
D,
D
oc noise=HomoscedasticNoise(le-5),

.)
>>> batch_indices = torch.arange(100,)
>>> batch_nn_indices = torch.arange(100,)
>>> batch_targets = torch.ones(100,)
>>> batch_nn_targets = torch.ones(100,)

(continues on next page)

68

Chapter 1. Citation

MuyGPyS, Release beta

(continued from previous page)

>>> muygps_layer_object = MuyGPs_layer(
. muygps_model,
. batch_indices,
. batch_nn_indices,
. batch_targets,
. batch_nn_targets)

Parameters
* muygps_model (MuyGPS) — A MuyGPs object providing the Gaussian Process final layer.

* batch_indices — A torch.Tensor of shape (batch_count,) containing the indices of the
training data to be sampled for training.

* batch_nn_indices — A torch.Tensor of shape (batch_count, nn_count) containing
the indices of the k nearest neighbors of the batched training samples.

* batch_targets — A torch.Tensor of shape (batch_count, response_count) contain-
ing the responses corresponding to each batched training sample.

* batch_nn_targets - A torch.Tensor of shape (batch_count, nn_count,
response_count) containing the responses corresponding to the nearest neighbors
of each batched training sample.

» kwargs — Addition parameters to be passed to the kernel, possibly including additional hy-

perparameter dicts and a metric keyword.

forward(x)
Produce the output of a MuyGPs custom PyTorch layer.

Returns

e predictions — A torch.ndarray of shape (batch_count, response_count) whose rows
are the predicted response for each of the given batch feature.

* variances — A torch.ndarray of shape (batch_count,response_count) consisting of
the diagonal elements of the posterior variance.

Copyright 2021-2023 Lawrence Livermore National Security, LLC and other MuyGPyS Project Developers. See the
top-level COPYRIGHT file for details.

SPDX-License-Identifier: MIT

1.6 Univariate Regression Tutorial

This notebook walks through a simple regression workflow and explains the components of MuyGPyS.

[2]: import numpy as np

from MuyGPyS._test.sampler import UnivariateSampler, print_results
from MuyGPyS.gp import MuyGPS

from MuyGPyS.gp.deformation import Isotropy, 12

from MuyGPyS.gp.hyperparameter import AnalyticScale, Parameter
from MuyGPyS.gp.kernels import Matern

from MuyGPyS.gp.noise import HomoscedasticNoise

(continues on next page)

1.6. Univariate Regression Tutorial 69

[3]:

[4]:

[5]:

[6]:

[7]:

[8]:

MuyGPyS, Release beta

(continued from previous page)

from MuyGPyS.neighbors import NN_Wrapper

from MuyGPyS.optimize import Bayes_optimize
from MuyGPyS.optimize.batch import sample_batch
from MuyGPyS.optimize.loss import lool_fn

We will set a random seed here for consistency when building docs. In practice we would not fix a seed.

np.random. seed(0)

1.6.1 Sampling a Curve from a Conventional GP

This notebook will use a simple one-dimensional curve sampled from a conventional Gaussian process. We will specify
the domain as a grid on a one-dimensional surface and divide the observations into train and test data.

Feel free to download the source notebook and experiment with different parameters.

First we specify the region of space, the data size, and the proportion of the train/test split.

data_count = 3000
train_ratio = 0.075

We will assume that the true data is produced with no noise, so we specify a very small noise prior for numerical
stability. This is an idealized experiment with effectively no instrument error.

nugget_noise = HomoscedasticNoise(le-14)

We will perturb our simulated observations (the training data) with some i.i.d Gaussian measurement noise.

measurement_noise = HomoscedasticNoise(le-7)

Finally, we will specify kernel hyperparameters smoothness and length_scale. The length_scale scales the
distances that are inputs to the kernel function, while the smoothness parameter determines how differentiable the GP
prior is. The larger smoothness grows, the smoother sampled functions will become.

sim_length_scale = Parameter(0.05)
sim_smoothness = Parameter(2.0)

We use all of these parameters to define a Matérn kernel GP and a sampler for convenience. The UnivariateSampler
class is a convenience class for this tutorial, and is not a part of the library.

sampler = UnivariateSampler (
data_count=data_count,
train_ratio=train_ratio,
kernel=Matern(
smoothness=sim_smoothness,
deformation=Isotropy(
12,
length_scale=sim_length_scale,
)
),
noise=nugget_noise,
measurement_noise=measurement_noise,

70 Chapter 1. Citation

[9]:

[10]:

[11]:

MuyGPyS, Release beta

Finally, we will sample a curve from this GP prior and visualize it. Note that we perturb the train responses (the values
that our model will actual receive) with Gaussian measurement noise. Further note that this is not especially fast, as
sampling from a conventional Gaussian process requires computing the Cholesky decomposition of a (data_count,
data_count) matrix.

train_features, test_features = sampler.features()
train_responses, test_responses = sampler.sample()

sampler.plot_sample()

Sampled Curve

=
L
1

+ perturbed train response
—— testresponse

Response Range
°© o
=] [%] [=]

i i i

|
o
un
1

0.0 0.2 0.4 0.6 0.8 1.0
Feature Domain

Sampled Curve (subset)

Response Range

0.50 0.52 0.|54 0.|56 0.58 0.60
Feature Domain

We will now attempt to recover the response on the held-out test data by training a univariate MuyGPS model on the
perturbed training data.

1.6. Univariate Regression Tutorial 71

[12]:

[13]:

MuyGPyS, Release beta

1.6.2 Constructing Nearest Neighbor Lookups

NN_Wrapper is an api for tasking several KNN libraries with the construction of lookup indexes that empower fast
training and inference. The wrapper constructor expects the training features, the number of nearest neighbors, and
a method string specifying which algorithm to use, as well as any additional kwargs used by the methods. Currently
supported implementations include exact KNN using sklearn (“exact”) and approximate KNN using hnsw (“hnsw”,
requires installing MuyGPyS using the hnswlib extras flag).

Here we construct an exact KNN data example with k = 30

nn_count = 30
nbrs_lookup = NN_Wrapper(train_features, nn_count, nn_method="exact", algorithm="ball_
—tree")

This nbrs_lookup index is then usable to find the nearest neighbors of queries in the training data.

1.6.3 Sampling Batches of Data

MuyGPyS includes convenience functions for sampling batches of data from existing datasets. These batches are re-
turned in the form of row indices, both of the sampled data as well as their nearest neighbors.

Here we sample a random batch of train_count elements. This results in using all of the train data for training. We
only do that in this case because this example uses a relatively small amount of data. In practice, we would instead set
batch_count to a resaonable number. In practice we find reasonable values to be in the range of 500-2000.

batch_count = sampler.train_count
batch_indices, batch_nn_indices = sample_batch(
nbrs_lookup, batch_count, sampler.train_count

)

These indices and nn_indices arrays are the basic operating blocks of MuyGPyS linear algebraic inference.
The elements of indices.shape == (batch_count,) lists all of the row indices into train_features and
train_responses corresponding to the sampled data. The rows of nn_indices.shape == (batch_count,
nn_count) list the row indices into train_features and train_responses corresponding to the nearest neigh-
bors of the sampled data.

While the user need not use the MuyGPyS.optimize.batch sampling tools to construct these data, they will need to
construct similar indices into their data in order to use MuyGPyS.

1.6.4 Setting and Optimizing Hyperparameters

One initializes a MuyGPS object by indicating the kernel, as well as optionally specifying hyperparameters.

Consider the following example, which constructs a MuyGPs object with a Matérn kernel. The MuyGPS object expects a
kernel function object, a noise noise model parameter, and a variance scale parameter. We will use an AnalyticScale
instance, which has an analytic optimization method. The Matern object expects a deformation function object and a
smoothness parameter. We use an isotropic deformation, so Isotropy expects a Callable indicating the metric to use
(12 distance in this case) and a length scale parameter.

Hyperparameters can be optionally given a lower and upper optimization bound tuple on creation. If "bounds" is set,
one can also set the hyperparameter value with the arguments "sample" and "log_sample" to generate a uniform or
log uniform sample, respectively. Hyperparameters without optimization bounds will remain fixed during optimization.

In this experiment, we make the simplifying assumptions that we know the true length_scale and
measurement_noise, and reuse the parameters used to create the sampler. We will try to learn the smoothness
parameter.

72 Chapter 1. Citation

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html
https://github.com/nmslib/hnswlib

[14]:

[15]:

[16]:

[17]:

[18]:

MuyGPyS, Release beta

muygps = MuyGPS(
kernel=Matern(
smoothness=Parameter("log_sample", (0.1, 5.0)),
deformation=Isotropy(
12,
length_scale=sim_length_scale,
)
),
noise=-measurement_noise,
scale=AnalyticScale(),

There is one additionally common hyperparameter, the scale variance scale parameter, that is treated differently than
the others. scale cannot be directly set by the user, and always initializes to the value "unlearned". We will show
how to train scale below. All hyperparameters other than scale are assumed to be fixed unless otherwise specified.

MuyGPyS depends upon linear operations on specially-constructed tensors in order to efficiently estimate GP realiza-
tions. Constructing these tensors depends upon the nearest neighbor index matrices that we described above. We can
construct a distance tensor coalescing all of the square pairwise distance matrices of the nearest neighbors of a batch
of points.

This snippet constructs a matrix of shape (batch_count, nn_count) coalescing all of the crosswise distances be-
tween our set of points and their nearest neighbors. This method is verbose; we will see a more concise version below.

batch_crosswise_dists = muygps.kernel.deformation.crosswise_tensor(
train_features,
train_features,
batch_indices,
batch_nn_indices,

We can similarly construct a difference tensor of shape (batch_count, nn_count, nn_count) containing the pair-
wise distances of the nearest neighbor sets of each sampled batch element.

pairwise_dists = muygps.kernel.deformation.pairwise_tensor(
train_features, batch_nn_indices

The MuyGPS object we created earlier allows us to easily realize corresponding kernel tensors by way of its kernel
function. We do not need to construct these directly for training - out optimization function will do so internally.

Kcross = muygps.kernel(batch_crosswise_dists)
Kin = muygps.kernel (pairwise_dists)

In order to perform Gaussian process regression, we must utilize these kernel tensors in conjunction with their associ-
ated known responses. We can construct these matrices using the index matrices we derived earlier.

batch_targets = train_responses[batch_indices]
batch_nn_targets = train_responses[batch_nn_indices]

Since we often must realize batch_targets and batch_nn_targets in close proximity to
batch_crosswise_dists and batch_pairwise_dists, the MuyGPS class includes a convenience function
bundles these operations.

1.6. Univariate Regression Tutorial 73

[19]:

[20]:

[21]:

MuyGPyS, Release beta

~

batch_crosswise_dists,
batch_pairwise_dists,
batch_targets,
batch_nn_targets,

) = muygps.make_train_tensors(
batch_indices,
batch_nn_indices,
train_features,
train_responses,

Kcross = muygps.kernel(batch_crosswise_dists)
Kin = muygps.kernel (pairwise_dists)

We supply a convenient leave-one-out cross-validation utility functor class ("OptimizeFn <../MuyG-
PyS/gp/optimize.rst>"__) that utilizes these tensors to repeatedly realize kernel tensors during optimization. Optimiza-
tion implementations are objects of this class. The library currently natively supports two optimization workflows:
This optimization loop wraps a few different batch optimization methods (importable from MuyGPyS.optimize):
* “Bayes_optimize <../MuyGPyS/gp/optimize.rst>"__, which wraps “bayes_opt.BayesianOptimization
<https://github.com/fmfn/BayesianOptimization>"__ in batch mode only. * “L_BFGS_B_optimize <../MuyG-
PyS/gp/optimize.rst>"__, which wraps the “L-BFGS-B” implementation in "scipy.optimize.minimize
<https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.minimize.html>"__. It is possible to
create a new instance of OptimizeFn to support custom outer-loop optimizations.

This example uses Bayes_optimize. There are several additional parameters inherited from the implementation that
a user might want to set. In particular, init_points (the number of “exploration” objective function evaluations
to perform) and n_iter (the number of “exploitation” objective function evaluations to perform) are of use to most
users. This example also sets random_state for consistency. See the documentation of BayesianOptimization for
more examples.

muygps_optimized = Bayes_optimize(
muygps,
batch_targets,
batch_nn_targets,
batch_crosswise_dists,
batch_pairwise_dists,
loss_fn=1oo0l_fn,
verbose=True,
random_state=1,
init_points=5,
n_iter=15,

)

parameters to be optimized: ['smoothness']
bounds: [[0.1 5. 1]
initial x0: [0.92898658]

iter	target	smooth...
1	1.826e+03	0.929
2	2.359e+03	2.143
3	1.953e+03	3.63
4	614.4	0.1006
5	2.309e+03	1.581

(continues on next page)

74 Chapter 1. Citation

https://github.com/fmfn/BayesianOptimization
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.minimize.html
https://github.com/fmfn/BayesianOptimization

[22]:

[23]:

[24]:

MuyGPyS, Release beta

(continued from previous page)

| 6 | 1.707e+03 | 0.8191

| 7 | 1.48e+03 | 5.0 |
| 8 | 2.201e+03 | 2.83

| 9 | 2.373e+03 | 1.883

| 10 | 2.373e+03 | 1.996

| 11 | 2.375e+03 | 1.938 |
| 12 | 2.375e+03 | 1.938

| 13 | 2.375e+03 | 1.938 I
| 14 | 2.375e+03 | 1.938

| 15 | 2.375e+03 | 1.938

| 16 | 2.375e+03 | 1.938

| 17 | 2.375e+03 | 1.938 |
| 18 | 2.375e+83 | 1.945

| 19 | 2.375e+03 | 1.927

| 20 | 2.375e+83 | 1.95

| 21 | 2.375e+03 | 1.926

As it is a variance scaling parameter that is insensitive to prediction-based optimization, we separately optimize scale.
In this case, we invoke muygps.optimize_scale(), which approximates scale based upon the mean of the closed-form
scale solutions associated with each of its batched nearest neighbor sets. Note that this method is sensitive to several
factors, include batch_count, nn_count, and the overall size of the dataset, tending to perform better as each of these
factors increases. If we had instead used the optimization-free MuyGPyS.gp.hyperparameter.scale.Scale class,
this function would effectively be a no-op and leave the value of muygps_optimized.scale unchanged.

This is usually performed after optimizing other hyperparameters.

muygps_optimized = muygps_optimized.optimize_scale(batch_pairwise_dists, batch_nn_
< targets)

1.6.5 Inference

With set (or learned) hyperparameters, we are able to use the muygps object to predict the response of test data. Several
workflows are supported.

See below a simple regression workflow, using the data structures built up in this example. This workflow uses the
compact tensor-making function make_predict_tensors() to succinctly create tensors defining the pairwise_dists
among each nearest neighbor set, the crosswise_dists between each test point and its nearest neighbor set, and the
nn_targets or responses of the nearest neighbors in each set. We then create the Kcross cross-covariance matrix
and Kin covariance tensor and pass them to MuyGPS.posterior_mean() and MuyGPS.posterior_variance() in order to
obtain our predictions.

First, we find the indices of the nearest neighbors of all of the test elements and save the results in test_nn_indices.

test_count = test_features.shape[0]
indices = np.arange(test_count)
test_nn_indices, _ = nbrs_lookup.get_nns(test_features)

We then use nn_indices to make difference and target tensors for the test data. These tensors are similar to those used
for batch optimization, except that we do not assume that we know the targets of the

(
test_crosswise_dists,
(continues on next page)

1.6. Univariate Regression Tutorial 75

../MuyGPyS/gp/muygps.rst

[25]:

[26]:

[27]:

[27]:

[28]:

MuyGPyS, Release beta

(continued from previous page)

test_pairwise_dists,
test_nn_targets,

) = muygps.make_predict_tensors(
indices,
test_nn_indices,
test_features,
train_features,
train_responses,

We create the kernel tensors for the optimized model.

Kcross = muygps_optimized.kernel (test_crosswise_dists)
Kin = muygps_optimized.kernel (test_pairwise_dists)

This regression example returns predictions (posterior means) and variances for each element of the test dataset. These
variances are in the form of diagonal and independent variances that encode the uncertaintainty of the model’s predic-
tions at each test point. To scale the variances, they should be multiplied by the trained scale scaling parameters, of
which there will be one scalar associated with each dimension of the response.

We use the MuyGPS . posterior_mean() and MuyGPS.posterior_variance () functions to find the posterior means
and variances associated with each training prediction. The 95% confidence interval sizes are straightforward to com-
pute as 0% 1.96, where o is the standard deviation. We compute coverage as the proportion of posterior means that differ
from the true response by no more than the confidence interval size. We coverage for the 95% confidence intervals
ideally should be near 95%.

predictions = muygps_optimized.posterior_mean(Kin, Kcross, test_nn_targets)

variances = muygps_optimized.posterior_variance(Kin, Kcross)

confidence_intervals = np.sqrt(variances) * 1.96

coverage = np.count_nonzero(np.abs(test_responses - predictions) < confidence_intervals)..
—/ test_count

Finally, we use RMSE, the mean diagonal variance and confidence interval size, as well as coverage to analyze our fit.

print_results(
test_responses, ("optimized", muygps_optimized, predictions, variances, confidence_
—.intervals, coverage)

)
<pandas.io.formats.style.Styler at 0x7£fa9dd933490>

Note here that the returned value for smoothness might be different from the smoothness used by the conventional
GP. Also, the value of o2 is a little different from the “true” value of 1.0. However, our mean predictions have low
RMSE and our confidence intervals are low on average while our 95% confidence intervals succeed in covering ~95%
of the true responses.

We can also plot our responses and evaluate their performance. We plot below the predicted and true curves, as well
as the 95% confidence interval. We plot a smaller subset of the data in the lower curve in order to better scrutinize the
95% confidence interval.

sampler.plot_results(("optimized", predictions, confidence_intervals))

76 Chapter 1. Citation

MuyGPyS, Release beta

Sampled Curve with optimized model

1.5

o =
(%] (=]
1 |

Response Range
o
=]

—0.5

—1.0 1

+ perturbed train response
—— test response
--- optimized predictions
optimized 95% Confidence Interval

0.0 0.2 0.4 0.6 0.8
Feature Domain

Sampled Curve (subset) with optimized model

1.0

Response Range
o o o = = =
Y = (=] = 8] Y

o
[N
i

perturbed train response
—— testresponse

--- optimized predictions
optimized 95% Confidence Interval

0.50 0.52 D.|54 D.|56 0.58
Feature Domain

Copyright 2021-2023 Lawrence Livermore National Security, LLC and other MuyGPyS Project Developers. See the
top-level COPYRIGHT file for details.

SPDX-License-Identifier: MIT

1.6. Univariate Regression Tutorial

77

[2]:

[3]:

[4]:

[5]:

[6]:

MuyGPyS, Release beta

1.7 lllustrating MuyGPs Sparsification, Prediction, and Uncertainty
Quantification

This notebook illustrates how MuyGPs conditions predictions on nearest neighbors and visualizes the posterior distri-
butions.

import matplotlib.pyplot as plt
import numpy as np

from MuyGPyS._test.sampler import UnivariateSampler2D, print_results
from MuyGPyS.gp import MuyGPS

from MuyGPyS.gp.deformation import Isotropy, 12, F2

from MuyGPyS.gp.hyperparameter import AnalyticScale, Parameter

from MuyGPyS.gp.kernels import Matern, RBF

from MuyGPyS.gp.noise import HomoscedasticNoise

from MuyGPyS.neighbors import NN_Wrapper

from MuyGPyS.optimize.batch import sample_batch

We will set a random seed here for consistency when building docs. In practice we would not fix a seed.

np.random.seed(0)

1.7.1 Sampling a 2D Surface from a Conventional GP

This notebook will use a simple two-dimensional curve sampled from a conventional Gaussian process. We will specify
the domain as a simple grid on a one-dimensional surface and divide the observations néively into train and test data.

Feel free to download the source notebook and experiment with different parameters.

First we specify the data size and the proportion of the train/test split.

points_per_dim = 60
train_ratio = 0.2

We use all of these parameters to define a Matérn kernel GP and a sampler for convenience. The
UnivariateSampler2D class is a convenience class for this tutorial, and is not a part of the library. We will use
an anisotropic deformation to ensure that we sample data from the appropriate distribution.

kernel = Matern(
smoothness=Parameter(1.5),
deformation=Isotropy(
12,
length_scale=Parameter(0.2),
)

sampler = UnivariateSampler2D(
points_per_dim=points_per_dim,
train_ratio=train_ratio,
kernel=kernel,
noise=HomoscedasticNoise(le-7),
measurement_noise=HomoscedasticNoise(le-14),

78 Chapter 1. Citation

[77:

[8]:

[9]:

[10]:

[11]:

MuyGPyS, Release beta

Finally, we will sample a curve from this GP prior and visualize it. Note that we perturb the train responses (the values
that our model will actual receive) with Gaussian measurement noise. Further note that this is not especially fast, as
sampling from a conventional Gaussian process requires computing the Cholesky decomposition of a (data_count,
data_count) matrix.

train_features, test_features = sampler.features()
train_count, _ = train_features.shape
test_count, _ = test_features.shape

train_responses, test_responses = sampler.sample()

sampler.plot_sample()

Sampled Surface Training Points

Axis 1
Axis 1
s

O ML
I r
Axis 1

AXxis 0 AXis 0

1.7.2 Nearest Neighbors Sparsification

MuyGPyS achieves fast posterior inference by restricting the conditioning of predictions on only the most relevant
points in the training data. Currently, the library does this by utilizing the k nearest neighbors (KNN), relying upon
the intution that nearby points in the input space are more highly correlated than distant points, and that nearby points
contribute the overwhelming majority of the weight in the posterior mean. While methods other than nearest neighbors
are also worth considering, the library presently only supports KNN.

We will illustrate the intuition behind using KNN. First, we will form a KNN index of the training data for querying.
We will use the library’s built-in NN_Wrapper class, which wraps scikit-learn’s exact KNN implementation (used here)
and hnswlib’s approximate but much faster and more scalable implementation.

nn_count = 50
nbrs_lookup = NN_Wrapper(train_features, nn_count, nn_method="exact", algorithm="ball_
<tree")

We will use the same Matérn kernel used to simulate this data.

muygps = MuyGPS(
kernel=kernel,
noise=HomoscedasticNoise(le-7),

)

For a given prediction location z € RY, and training set X € R™*? with measured univariate responses y € R”, a
conventional zero-mean GP f ~ GP(0, K (-, -)) predicts the following posterior mean:

Elf(z) | X,y] = K(z,X)K(X,X)y. (1.1)

1.7. lllustrating MuyGPs Sparsification, Prediction, and Uncertainty Quantification 79

MuyGPyS, Release beta

Here K (z, X') € R™ is the cross-covariance between z and every element of the training data X, and K (X, X') € R"*"
is the covariance matrix of X with itself, whose inverse is sometimes called the precision matrix. The product of the
cross-covariance with the precision matrix K (z, X)K (X, X)~! € R" are sometimes called the kriging weights. These
kriging weights effectively induce a weighted average of the observed responses y. Ergo, if the kriging weights are
sparse (and for many practical problems they are), we need only compute the sparse elements of the kriging weights to
approximate the posterior mean!

Here we will illustrate our claim by observing the kriging weights for all of the training data for a particular prediction
point. We choose a test point, represented by the red plus, and plot the kriging weights of - (left) a version of the
problem including all of the data (for illustration purposes) - (center) the posterior mean conditioned on the training
data - (right) the posterior mean conditioned only on the nearest neighbors

[12]: test_index = int(test_count / 2) + 20

[13]: sampler.plot_kriging_weights(test_index, nbrs_lookup)

Kriging Weights (train) Kriging Weights (nearest)
r?:—.'_-ﬂ.'-_-'-;'::'-: i__-l_'ﬁ 10~
5 R LT

o e] :-'.-.'_ a0
Iy, * =y . m - -
) -tl:l' ol L ':_:IE.';_ . 10-3
v l.i'll Bl ™ + .-;'.JH.-- u v + . 10~%
A R T B !
— = . "I 1075
Il. .-. .:-..:-F.l.-l.:..‘llr.l-lT

m '.'I'l n ll-,l ;' _
- "] H " 10~7

e ek ':-_I X __"'::.I_
Axis O Axis O 10-8

As we can see, the kriging weights of the GP problem (center plot) isolate most of the weight near the query point (red
plus) in space. We can sparsify the kriging weights by only considering the nearest neighbors, represented in the right
plot, while maintaining most of the covariance information to predict the point.

1.7.3 Comparing MuyGPs to Conventional GP Posteriors

Here we will compute posterior mean and variances for the data using both a conventional GP approach and MuyGPs.

First, we compute a conventional GP.

[14]: crosswise_dists_full = kernel.deformation.crosswise_tensor(
test_features,
train_features,
np.arange(test_count),
[np.arange(train_count) for _ in range(test_count)],

)

pairwise_dists_full = kernel.deformation.pairwise_tensor(

train_features,

(continues on next page)

80 Chapter 1. Citation

[15]:

[16]:

[17]:

[18]:

[19]:

MuyGPyS, Release beta

(continued from previous page)

np.arange(train_count),

Kcross_full = kernel(crosswise_dists_full)
Kin_full = kernel(pairwise_dists_full)

Here we’ll stop to note that we have three matrices: the cross-covariance (Kcross_£full), the covariance (Kin_full),
and the response vector (train_responses). The mean and covariance are computed in terms of dense solves involv-
ing these matrices, whose dimensions increase linearly in the data size (resulting in a quadratic increase in storage and
a cubic increase in runtime).

print(f"Kcross_full shape: {Kcross_full.shape/")
print (£"Kin_full shape: {Kin_full.shape")
print(f"train_responses shape: {train_responses.shape}")

Kcross_full shape: (2880, 720)
Kin_full shape: (720, 720)
train_responses shape: (720,)

We use these matrices to compute the posterior mean and variance, and construct univariate 95% confidence intervals
for each individual prediction.

mean_full = Kcross_full @ np.linalg.solve(Kin_full, train_responses)
covariance_full = 1 - Kcross_full @ np.linalg.solve(Kin_full, Kcross_full.T)
covariance_diag = np.diag(covariance_full)
confidence_interval_full = np.sqrt(covariance_diag) * 1.96
coverage_full = (

np.count_nonzero(

np.abs(test_responses - mean_full) < confidence_interval_full
) / test_count

Now we repeat a similar workflow for MuyGPs. This time, we sample nearest neighbors from the previously-
constructed index and create distance tensors using MuyGPyS convenience functions.

nn_indices, _ = nbrs_lookup.get_nns(test_features)

(
crosswise_dists,
pairwise_dists,
nn_responses,

) = muygps.make_predict_tensors(
np.arange(test_count),
nn_indices,
test_features,
train_features,
train_responses,

Kcross = muygps.kernel(crosswise_dists)
Kin = muygps.kernel (pairwise_dists)

‘We now have three tensors, similar to the conventional workflow: Kcross, Kin, and nn_responses. These tensors
have the following shapes, which only increase linearly as the data size increases, which drastically improves scalability
compared to the conventional GP.

1.7. lllustrating MuyGPs Sparsification, Prediction, and Uncertainty Quantification 81

[20]:

[21]:

[22]:

MuyGPyS, Release beta

print(f"Kcross shape: {Kcross.shape}")
print (£"Kin shape: {Kin.shape}")
print (f"nn_responses shape: {nn_responses.shape}")

Kcross shape: (2880, 50)
Kin shape: (2880, 50, 50)
nn_responses shape: (2880, 50)

Here we use MuyGPyS to compute the posterior distribution, similar in form to the conventional GP.

mean_muygps = muygps.posterior_mean(
Kin, Kcross, nn_responses
)
variance_muygps = muygps.posterior_variance(
Kin, Kcross
)
confidence_interval_muygps = np.sqrt(variance_muygps) * 1.96
coverage_muygps = (
np.count_nonzero (
np.abs(test_responses - mean_muygps) < confidence_interval_muygps
) / test_count

Finally, we compare our performance. The left column plots the absolute residual of each posterior mean implementa-
tion with the true response for the whole test dataset. The center column plots the size of the 95% confidence intervals
across the whole dataset. Finally, the right column plots where the residual exceeds the confidence interval. Red
points in the right column exceed the confidence interval, which should comprise 5% of the data if the uncertainties

are calibrated.

sampler.plot_errors(
("MuyGPs", mean_muygps, confidence_interval_muygps),
("Conventional", mean_full, confidence_interval_full),

82 Chapter 1. Citation

[23]:

[23]:

MuyGPyS, Release beta

MuyGPs residual

I 03

0.40

MuyGPs |Residual| - CI

L 02 0.35
| 0.30
0.1
— — 025
2 oo 2 w I'I
[
-0.1 0.15
0.10
J - -0.2 T
i 0.05 e il e AT
Axis 0 -0.3 Axis 0
0.00
Conventional residual I0_3 Conventional Cl Magnitude Conventional |Residual| - C'O-B
= o (o | S L
1 i
0.2 0.2
r 0.1
— — —
un Lo.o un i) Ll .T
> > bad
< < f <
[
-0.1
i F-0.2 . |
. e o N
Axis 0 —0.3 Axis 0

F0.1

r0.0

ro.1

r0.0

We can see that the MuyGPyS posteriors closely matches the conventional GP, while remaining much more scalable.
Note especially that the same points exceed the confidence interval for each model. Hopefully, this demonstration has
helped to motivate the MuyGPs sparsification approach. For more validation, we directly compare some summary

statistics of the two approaches.

print_results(

test_responses,

("MuyGPyS", muygps, mean_muygps, variance_muygps, confidence_interval_muygps,..
—,coverage_muygps) ,

("Conventional", muygps, mean_full, covariance_diag, confidence_interval_full,..
—,coverage_full),

)

<pandas.io.formats.style.Styler at 0x7f3e517d4d30>

Copyright 2021-2023 Lawrence Livermore National Security, LLC and other MuyGPyS Project Developers. See the

top-level COPYRIGHT file for details.
SPDX-License-Identifier: MIT

1.7. lllustrating MuyGPs Sparsification, Prediction, and Uncertainty Quantification

83

[2]:

[3]:

[4]:

[5]:

MuyGPyS, Release beta

1.8 Deep Kernels with MuyGPs in PyTorch Tutorial

In this tutorial, we outline how to construct a simple deep kernel model using the PyTorch implementation of MuyGPs.

We use the MNIST classification problem as a benchmark. We will use the deep kernel MuyGPs model to classify
images of handwritten digits between 0 and 9. In order to reduce the runtime of the training loop, we will use a fully-
connected architecture, meaning we will have to vectorize each image prior to training. We download the training and
testing data using the torchvision.datasets API.

First, we will import necessary dependencies. We also force MuyGPyS to use the "torch" backend. This can also be
done by setting the MUYGPYS_BACKEND environment variable to "torch".

%env MUYGPYS_BACKEND=torch
%env MUYGPYS_FTYPE=32

env: MUYGPYS_BACKEND=torch
env: MUYGPYS_FTYPE=32

import numpy as np

import random

import matplotlib.pyplot as plt

import os

import torch

import torchvision

from MuyGPyS.examples.muygps_torch import predict_model
from MuyGPyS.gp import MuyGPS

from MuyGPyS.gp.deformation import 12, Isotropy
from MuyGPyS.gp.hyperparameter import Parameter
from MuyGPyS.gp.kernels import Matern

from MuyGPyS.gp.noise import HomoscedasticNoise
from MuyGPyS.neighbors import NN_Wrapper

from MuyGPyS.optimize.batch import sample_batch
from MuyGPyS.torch import MuyGPs_layer

from torch import nn

from torch.nn.functional import one_hot

from torch.optim.lr_scheduler import ExponentialLR

WARNING: All log messages before absl::InitializelLog() is called are written to STDERR
I0000 00:00:1707872829.179408 1 tfrt_cpu_pjrt_client.cc:349] TfrtCpuClient created.

We set the target directory for torch to download MNIST.

root = './data'
if not os.path.exists(root):
os.mkdir(root)

We use torch’s utilities to download MNIST and transform it into an appropriately normalized tensor.

trans = torchvision.transforms.Compose(
[
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5,),(1.0,)),
]
)
train_set = torchvision.datasets.MNIST(

(continues on next page)

84 Chapter 1. Citation

[6]:

[7]:

[8]:

MuyGPyS, Release beta

(continued from previous page)

root=root, train=True, transform=trans, download=True
)
test_set = torchvision.datasets.MNIST(

root=root, train=False, transform=trans, download=True

MNIST is a popular benchmark dataset of hand-written digits, 0-9. Each digit is a 28x28 pixel image, with 784 total
pixel features.

fig, axes = plt.subplots(l, 6, figsize=(10, 3))

for i, ax in enumerate(axes):
ax.imshow(train_set.datal[i, :, :1)
ax.set_xticks([])
ax.set_yticks([])

plt.show()

S]ol-)/]qa]2

In the interest of reducing the runtime of this example, we will use vectorized images as our features in this dataset.
We will collect 60,000 training samples and 10,000 test samples.

class_count = len(train_set.classes)

train_count, x_pixel_count, y_pixel_count = train_set.data.shape
test_count, _, _ = test_set.data.shape

feature_count = x_pixel_count * y_pixel_count

We vectorize the images and one-hot encode the class labels.

train_features = torch.zeros((train_count, feature_count))
train_responses = torch.zeros((train_count, class_count))

for i in range(train_count):
train_features[i,:] = train_set[i][0].flatten()
train_responses[i,:] = one_hot(
torch. tensor(train_set[i][1]).to(torch.int64),
num_classes=class_count,

test_features = torch.zeros((test_count, feature_count))
test_responses = torch.zeros((test_count, class_count))

for i in range(test_count):
test_features[i,:] = test_set[i][0].flatten()
test_responses[i,:] = one_hot(
torch.tensor(test_set[i][1]).to(torch.int64),
num_classes=class_count,

1.8. Deep Kernels with MuyGPs in PyTorch Tutorial 85

[9]:

[10]:

[11]:

MuyGPyS, Release beta

We set up our nearest neighbor lookup structure using the NN_Wrapper data structure in MuyGPs. We then define our
batch and construct tensor containing the features and targets of the batched elements and their 30 nearest neighbors.
We choose an algorithm that will return the exact nearest neighbors. We set a random seed for reproducability.

torch.autograd.set_detect_anomaly(True)
np.random.seed(0)
test_count = test_features.shape

train_count, _ = train_features.shape
nn_count = 30
nbrs_lookup = NN_Wrapper(train_features, nn_count, nn_method="exact")

We sample a training batch of 500 elements and record their indices and those of their nearest neighbors.

batch_count = 500
batch_indices, batch_nn_indices = sample_batch(
nbrs_lookup, batch_count, train_count

)

batch_features = train_features[batch_indices,:]
batch_targets = train_responses[batch_indices, :]
batch_nn_targets = train_responses[batch_nn_indices, :]

if torch.cuda.is_available():
train_features = train_features.cuda()
train_responses = train_responses.cuda()
test_features = test_features.cuda()
test_responses = test_responses.cuda()

We now define a stochastic variational deep kernel MuyGPs class. This class composes a dense neural network embed-
ding with a MuyGPyS. torch.muygps_layer Gaussian process layer. Presently, this layer only supports the Matérn
kernel with special values of the smoothness parameter set to 0.5, 1.5, 2.5, or co. The smoothness values are limited
because torch does not implement modified bessel functions of the second kind. Future versions of the library will
also support other kernel types.

class SVDKMuyGPs(nn.Module):
def __init__(

self,

muygps_model,
batch_indices,
batch_nn_indices,
batch_targets,
batch_nn_targets,

super().__init__Q
self.embedding = nn.Sequential(
nn.Linear(784,400),
nn.RelLUQ),
nn.Linear (400, 200),
nn.RelLUQ),
nn.Linear (200, 100),
)
self.batch_indices = batch_indices
self.batch_nn_indices = batch_nn_indices

(continues on next page)

86 Chapter 1. Citation

[12]:

[13]:

MuyGPyS, Release beta

def

(continued from previous page)

self.batch_targets = batch_targets
self.batch_nn_targets = batch_nn_targets
self.GP_layer = MuyGPs_layer(
muygps_model,
batch_indices,
batch_nn_indices,
batch_targets,
batch_nn_targets,
)

self.deformation = self.GP_layer.deformation

forward(self,x):

predictions = self.embedding(x)

predictions, variances = self.GP_layer(predictions)
return predictions, variances

1.8.1 Training a Deep Kernel MuyGPs Model

We will use a Matérn kernel with a smoothness parameter of 0.5 and a Guassian homoscedastic noise prior variance

of le-6.

Presently the torch backend only supports fixed special case Matérn smoothness parameters with values 0.5, 1.5, or

2.5.

An isotropic length scale is the only torch-optimizable parameter.

muygps_model = MuyGPS(
kernel=Matern(

),

smoothness=Parameter(0.5),
deformation=Isotropy(

12,

length_scale=Parameter(1.0, (0.1, 2))
)

noise=HomoscedasticNoise(le-6),

We instantiate a SVDKMuyGPs model using this MuyGPS model.

model =

SVDKMuyGPs (

muygps_model = muygps_model,
batch_indices=batch_indices,
batch_nn_indices=batch_nn_indices,
batch_targets=batch_targets,
batch_nn_targets=batch_nn_targets,

)

if torch.cuda.is_available():
model = model.cuda()

We use the Adam optimizer over 10 training iterations, with an initial learning rate of 1e-2 and decay of 0.97.

1.8. Deep Kernels with MuyGPs in PyTorch Tutorial 87

MuyGPyS, Release beta

[14]: training_iterations = 10
optimizer = torch.optim.Adam(
[{'params': model.parameters()}], lr=le-2
)

scheduler = ExponentialLR(optimizer, gamma=0.97)

We will use cross-entropy loss, as it is commonly performant for classification problems. Other losses are available.

[15]: ce_loss = nn.CrossEntropyLoss()

We construct a standard PyTorch training loop function.

[16]: def train(nbrs_lookup):
for i in range(training_iterations):
model . train()
optimizer.zero_grad()
predictions,variances = model (train_features)
loss = ce_loss(predictions,batch_targets)
loss.backward()
optimizer.step()
scheduler.step()
if np.mod(i,1) == 0:
print(f"Iter {i + 1}/{training_iterations} - Loss: {loss.item()}")
model.eval()
nbrs_lookup = NN_Wrapper(
model . embedding (train_features) .detach() .numpy(),
nn_count, nn_method="exact"

)

batch_nn_indices,_ = nbrs_lookup._get_nns(
model . embedding(batch_features).detach() .numpy(),
nn_count=nn_count,

)

batch_nn_targets = train_responses[batch_nn_indices, :]
model .batch_nn_indices = batch_nn_indices
model .batch_nn_targets = batch_nn_targets

torch.cuda.empty_cache()

nbrs_lookup = NN_Wrapper(

model . embedding (train_features) .detach() .numpy (),

nn_count,

nn_method="exact",

)

batch_nn_indices,_ = nbrs_lookup._get_nns(
model . embedding (batch_features) .detach() .numpy (),
nn_count=nn_count,

)

batch_nn_targets = train_responses[batch_nn_indices, :]
model .batch_nn_indices = batch_nn_indices

model .batch_nn_targets = batch_nn_targets

return nbrs_lookup, model

Finally, we execute the training function and evaluate the trained model

[17]: nbrs_lookup, model_trained = train(nbrs_lookup)

88 Chapter 1. Citation

[18]:

[19]:

MuyGPyS, Release beta

Iter 1/10 - Loss: 1.514917016029358

Iter 2/10 - Loss: 1.4779890775680542
Iter 3/10 - Loss: 1.4398393630981445
Iter 4/10 - Loss: 1.423111081123352

Iter 5/10 - Loss: 1.4219379425048828
Iter 6/10 - Loss: 1.4020675420761108
Iter 7/10 - Loss: 1.3868385553359985
Iter 8/10 - Loss: 1.3743661642074585
Iter 9/10 - Loss: 1.3675148487091064

Iter 10/10 - Loss: 1.3568177223205566

Our final model parameters look like the following:

for n, p in model_trained.named_parameters():
print(f"{n}, {p.shape if p.shape != torch.Size([]) else p.item()}")

embedding.®.weight, torch.Size([400, 784])
embedding.0.bias, torch.Size([400])
embedding.2.weight, torch.Size([200, 400])
embedding.2.bias, torch.Size([200])
embedding.4.weight, torch.Size([100, 200])
embedding.4.bias, torch.Size([100])
GP_layer.length_scale, 1.0085885524749756

We then compute and report the performance of the predicted test responses using this trained model.

predictions, variances = predict_model(
model=model_trained,
test_features=test_features,
train_features=train_features,
train_responses=train_responses,
nbrs_lookup=nbrs_lookup,
nn_count=nn_count,

)
print ("MNIST Prediction Accuracy Using Hybrid Torch Model:")
print(
(
torch. sum(
torch.argmax(predictions,dim=1) == torch.argmax(test_responses,dim=1)
) / 10000
) .numpy O
)
MNIST Prediction Accuracy Using Hybrid Torch Model:
0.9361

We note that this is quite mediocre performance on MNIST. In the interest of reducing notebook runtime we have used a
simple fully-connected neural network model to construct the Gaussian process kernel. To achieve results closer to the
state-of-the-art (near 100% accuracy), we recommend using more complex architectures which integrate convolutional
kernels into the model.

Copyright 2021-2023 Lawrence Livermore National Security, LLC and other MuyGPyS Project Developers. See the
top-level COPYRIGHT file for details.

SPDX-License-Identifier: MIT

1.8. Deep Kernels with MuyGPs in PyTorch Tutorial 89

[2]:

[3]:

[4]:

[5]:

MuyGPyS, Release beta

1.9 Fast Posterior Mean Tutorial

This notebook walks through the fast posterior mean workflow presented in Fast Gaussian Process Posterior Mean
Prediction via Local Cross Validation and Precomputation (Dunton et. al 2022) and explains the relevant components
of MuyGPyS.

The cell below uses the same code as that found in univariate_regression_tutorial.ipynb. This includes generating the
synthetic data from a GP and training two MuyGPs models to fit the data using Bayesian optimization.

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd

import timeit

from MuyGPyS._test.gp import benchmark_sample, BenchmarkGP

from MuyGPyS._test.sampler import UnivariateSampler, print_fast_results
from MuyGPyS.neighbors import NN_Wrapper

from MuyGPyS.gp import MuyGPS

from MuyGPyS.gp.deformation import Isotropy, 12

from MuyGPyS.gp.hyperparameter import AnalyticScale, Parameter

from MuyGPyS.gp.kernels import Matern

from MuyGPyS.gp.noise import HomoscedasticNoise

from MuyGPyS.gp.tensors import fast_nn_update, make_fast_predict_tensors

We will assume that we have already optimized the a MuyGPs model following the Univariate Regression Tutorial.

kernel = Matern(
smoothness=Parameter(2.0),
deformation=Isotropy(
12,
length_scale=Parameter(0.05),
),

We will use that kernel to simulate a curve and then compare the prediction times for both the conventional regression
and the fast kernel regression method.

np.random. seed(0)
measurement_noise = le-4
sampler = UnivariateSampler(
data_count=3000,
train_ratio=0.1,
kernel=kernel,
noise=-HomoscedasticNoise(le-14),
measurement_noise=HomoscedasticNoise(measurement_noise),
)
train_features, test_features = sampler.features()
test_count = test_features.shape[0]
train_count = train_features.shape[0]

train_responses, test_responses = sampler.sample()

We’ll visualize the results.

90 Chapter 1. Citation

https://arxiv.org/abs/2205.10879v1

[6]:

[77:

MuyGPyS, Release beta

sampler.plot_sample()

Sampled Curve

=
Ln
1

=
=
1

o
1%y
1

0.0 1

Response Range

—1.079 « perturbed train response
-1.5{ —— testresponse

0.0 0.2 0.4 0.6 0.8 1.0
Feature Domain

Sampled Curve (subset)

1.4

o = =
[=2] (=] 8]
| | 1

Response Range

0.50 0.52 0.154 0.56 0.58 0.60
Feature Domain

We then prepare a MuyGPS object and a nearest neighbors index. We could use a single MuyGPS object, but in this case
we create a second one for the fast regression because a larger noise prior helps to stabilize the computations.

nbrs_lookup = NN_Wrapper(train_features, nn_count=10, nn_method="exact",algorithm="ball_

—tree")

muygps = MuyGPS(
kernel=kernel,
noise=HomoscedasticNoise(le-4),
scale=AnalyticScale(),

)

muygps_fast = MuyGPS(
kernel=kernel,
noise=HomoscedasticNoise(le-1),
scale=AnalyticScale(),

1.9. Fast Posterior Mean Tutorial 91

[8]:

[9]:

[10]:

[11]:

[12]:

[13]:

MuyGPyS, Release beta

1.9.1 Benchmarking Fast Prediction

With set (or learned) hyperparameters, we are able to use the muygps object for fast prediction capability.

See below a fast posterior mean workflow, using the data structures built up in this example. This workflow
uses the compact tensor-making function make_fast_predict_tensors() to succinctly create tensors defining the
pairwise_dists among each nearest neighbor and the train_nn_targets_fast or responses of the nearest neigh-
bors in each set. We then create the Kin covariance tensor and form the precomputed coefficients matrix. We then
pass the precomputed coefficients matrix, the nn_indices matrix of neighborhood indices, and the closest neighbor
of each test point to MuyGPS.fast_posterior_mean() in order to obtain our predictions.

First we obtain the indices of the nearest neighbors of all of the training datapoints.

train_nn_indices, = nbrs_lookup.get_nns(train_features)

We then update these neighborhoods with the index of the corresponding training point so that each neighborhood
contains the query point.

train_nn_indices_fast = fast_nn_update(train_nn_indices)

We then compute the pairwise distance tensor and target matrix and use them to construct the corresponding kernel
tensor and the precomputed target matrix to be used in the fast kernel regression.

pairwise_dists_fast, nn_targets_fast = make_fast_predict_tensors(
train_nn_indices_fast,
train_features,
train_responses,

)

Kin_fast = muygps_fast.kernel(
muygps_fast.kernel.deformation.metric(pairwise_dists_fast)

)

precomputed_coefficients_matrix = muygps_fast.fast_coefficients(Kin_fast, nn_targets_

—fast)

The steps so far have involved only the training data, and can be precomputed before encountering the test data. We
now find the closest training point to each test point and return the corresponding enriched training points.

test_indices = np.arange(test_count)

test_nn_indices, _ = nbrs_lookup.get_nns(test_features)
closest_neighbor = test_nn_indices[:, 0]

closest_set = train_nn_indices_fast[closest_neighbor, :]

We use these indices to make the crosswise distance tensor, similar to usual prediction.

crosswise_dists_fast = muygps.kernel.deformation.crosswise_tensor(
test_features, train_features, test_indices, closest_set

Finally, we compute the crosscovariance and perform fast prediction.

Kcross_fast = muygps_fast.kernel (crosswise_dists_fast)

predictions_fast = muygps_fast.fast_posterior_mean(
Kcross_fast,
precomputed_coefficients_matrix[closest_neighbor],

92 Chapter 1. Citation

[14]:

[15]:

MuyGPyS, Release beta

1.9.2 Comparison with Conventional Prediction

With set (or learned) hyperparameters, we are able to use the muygps object to predict the response of test data. Several
workflows are supported.

See below a simple posterior mean workflow, using the data structures built up in this example. This is very similar to
the prediction workflow found in the univariate regression tutorial.

(
crosswise_dists,
pairwise_dists,
nn_targets,
) = muygps.make_predict_tensors(
np.arange(test_count),
test_nn_indices,
test_features,
train_features,
train_responses,
)
Kcross = muygps.kernel(crosswise_dists)
Kin = muygps.kernel (pairwise_dists)
predictions = muygps.posterior_mean(
Kin, Kcross, nn_targets
)
variances = muygps.posterior_variance(Kin, Kcross)
confidence_intervals = np.sqrt(variances) * 1.96
coverage = np.count_nonzero(np.abs(test_responses - predictions) < confidence_intervals).
—/ test_count

We compare our two methods in terms of time-to-solution and RMSE. In the conventional workflow we compute the
sum of the time it takes to: - identify the nearest neighbors of the test features, - form the relevant kernel tensors, and -
solve the posterior means.

In the fast posterior mean case, we compute the sum of the time it takes to: - identify the nearest neighbor of each
test point, - lookup coefficients in the precomputed coeflicient matrix, and - perform the dot product to form posterior
means.

Note that the fast kernel regression method does not compute a variance, and so its posterior variance, confidence
intervals, and coverage are nil.

def timing_posterior_mean():
test_nn_indices, _ = nbrs_lookup.get_nns(test_features)
(
crosswise_dists,
pairwise_dists,
nn_targets,
) = muygps.make_predict_tensors(
test_indices,
test_nn_indices,
test_features,
train_features,
train_responses,
)
Kcross = muygps.kernel (crosswise_dists)
Kin = muygps.kernel(pairwise_dists)

(continues on next page)

1.9. Fast Posterior Mean Tutorial 93

[16]:

[17]:

[17]:

[18]:

MuyGPyS, Release beta

(continued from previous page)

predictions = muygps.posterior_mean(
Kin, Kcross, nn_targets

def timing_fast_posterior_mean():
test_nn_indices_fast, _ = nbrs_lookup.get_nns(test_features)
closest_neighbor = test_nn_indices_fast[:, 0]
closest_set = train_nn_indices_fast[closest_neighbor, :].astype(int)
crosswise_dists = muygps.kernel.deformation.crosswise_tensor(
test_features,
train_features,
test_indices,
closest_set,
)
Kcross = muygps_fast.kernel (crosswise_dists)
predictsion_fast = muygps_fast.fast_posterior_mean(
Kcross,
precomputed_coefficients_matrix[closest_neighbor],

time_conv = %timeit -o timing_posterior_mean()
time_fast = %timeit -o timing_fast_posterior_mean()

169 ms = 1.01 ms per loop (mean
19.1 ms = 164 ps per loop (mean

std. dev. of 7 runs, 10 loops each)
std. dev. of 7 runs, 10 loops each)

+
+

+

nil_vec = np.zeros(test_count)

print_fast_results(
test_responses,
("conventional", time_conv, muygps, predictions),
("fast", time_fast, muygps_fast, predictions_fast),

)
<pandas.io.formats.style.Styler at 0x7flelel29390>

As we can see, we can gain an order of magnitude speed improvement by sacrificing some precision and the posterior
variance. We also plot our two methods and compare their results graphically.

sampler.plot_results(
("conventional", predictions, confidence_intervals),
("fast", predictions_fast, np.zeros(test_count)),

94 Chapter 1. Citation

MuyGPyS, Release beta

Sampled Curve with fast model

2.0
1.5 - A
Q1.0
E‘ ﬁ
@ 037 ﬂ‘u &
Qo perturbed train response
S —— test response
& —051 --- conventional predictions ’
& 10 conventional 95% Confidence Interval
--- fast predictions
—-1.54 fast 95% Confidence Interval
0.0 0.2 0.4 0.6 0.8 1.0
Feature Domain
Sampled Curve (subset) with fast model
1.4 -
@ 1.2 I
g 3 + perturbed train response
© -
£ 10- test reseonse o
m ---- conventional predictions
2 conventional 95% Confidence Interval
8_ 0.8 7 -- fast predictions
a fast 95% Confidence Interval
o 0.6 L —e,
1..-*' 1
0.4 - T T T _ T

T
0.54

T
0.56

Feature Domain

Copyright 2021-2023 Lawrence Livermore National Security, LLC and other MuyGPyS Project Developers. See the

top-level COPYRIGHT file for details.
SPDX-License-Identifier: MIT

1.9. Fast Posterior Mean Tutorial

95

[2]:

[3]:

[4]:

[5]:

[6]:

[7]:

[8]:

MuyGPyS, Release beta

1.10 Anisotropic Metric Tutorial

This notebook walks through a simple anisotropic regression workflow and illustrates anisotropic features of MuyGPyS.

import numpy as np

from MuyGPyS._test.sampler import UnivariateSampler2D, print_results

from MuyGPyS.gp import MuyGPS

from MuyGPyS.gp.deformation import Anisotropy, Isotropy, 12

from MuyGPyS.gp.hyperparameter import AnalyticScale, Parameter, VectorParameter
from MuyGPyS.gp.kernels import Matern

from MuyGPyS.gp.noise import HomoscedasticNoise

from MuyGPyS.neighbors import NN_Wrapper

from MuyGPyS.optimize import Bayes_optimize

from MuyGPyS.optimize.batch import sample_batch

from MuyGPyS.optimize.loss import lool_fn

Matplotlib is building the font cache; this may take a moment.
We will set a random seed here for consistency when building docs. In practice we would not fix a seed.

np.random. seed(0)

1.10.1 Sampling a 2D Surface from a Conventional GP

This notebook will use a simple two-dimensional curve sampled from a conventional Gaussian process. We will specify
the domain as a simple grid on a one-dimensional surface and divide the observations néively into train and test data.

Feel free to download the source notebook and experiment with different parameters.

First we specify the data size and the proportion of the train/test split.

points_per_dim = 60
train_ratio = 0.05

We will assume that the true data is produced with no noise, so we specify a very small noise prior for numerical
stability. This is an idealized experiment with effectively no instrument error.

nugget_noise = HomoscedasticNoise(le-14)

We will perturb our simulated observations (the training data) with some i.i.d Gaussian measurement noise.

measurement_noise = HomoscedasticNoise(le-7)

Finally, we will specify a Matérn kernel with hyperparameters. smoothness determines how differentiable the GP
prior is. The larger smoothness grows, the smoother sampled functions will become.

sim_smoothness = Parameter(1.5)

We will use an anisotropic deformation, where displacement along the dimensions are weighted differently. Each
dimension has a corresponding length_scale parameter.

sim_length_scale® = Parameter(0.1)
sim_length_scalel = Parameter(0.5)

96 Chapter 1. Citation

MuyGPyS, Release beta

We use all of these parameters to define a Matérn kernel GP and a sampler for convenience. The

UnivariateSampler2D class is a convenience class for this tutorial, and is not a part of the library. We will use
an anisotropic deformation to ensure that we sample data from the appropriate distribution.

[9]: sampler = UnivariateSampler2D(
points_per_dim=points_per_dim,
train_ratio=train_ratio,
kernel=Matern(
smoothness=sim_smoothness,
deformation=Anisotropy(
12,
length_scale=VectorParameter(
sim_length_scale0,
sim_length_scalel,
)
)
D,
noise=nugget_noise,
measurement_noise=measurement_noise,

Finally, we will sample a curve from this GP prior and visualize it. Note that we perturb the train responses (the values
that our model will actual receive) with Gaussian measurement noise. Further note that this is not especially fast, as

sampling from a conventional Gaussian process requires computing the Cholesky decomposition of a (data_count,
data_count) matrix.

[10]: train_features, test_features = sampler.features()

[11]: train_responses, test_responses = sampler.sample()

[12]: sampler.plot_sample()

Sampled Surface

Training Points Testing Points

.
. et == -
. " . N
L "
. .n r
T - .
-, H ~ . 1
— — . e L " —
v w " - L] v
Rul RUl . f n
B3 > 1 - * 0
< < |y - . =t <
- - - -
LI— lJ "o
CER R R -1
", . oL
k LI T . .
n a I I.I-I.I - n -2
Axis 0 Axis 0

We can observe that our choice of anisotropy has caused the globular Gaussian features in the sampled surface to
“smear” in the direction of the more heavily weighted axis.

1.10. Anisotropic Metric Tutorial 97

[13]:

[14]:

[15]:

MuyGPyS, Release beta

1.10.2 Training an Anisotropic Model

We will not belabor the details covered in the Univariate Regression Tutorial. We must similarly construct a nearest
neighbors index and sample a training batch in order to optimize a model.

For now, we use isotropic nearest neighbors as we do not have a guess as to the anisotropic scaling. Future versions of
the library will use learned anisotropy to modify neighborhood structure during optimization.

nn_count = 30
nbrs_lookup = NN_Wrapper(train_features, nn_count, nn_method="exact", algorithm="ball_
~tree")
batch_count = sampler.train_count
batch_indices, batch_nn_indices = sample_batch(
nbrs_lookup, batch_count, sampler.train_count

We construct a MuyGPs object with a Matérn kernel. For simplicity, we will fix smoothness and attempt to optimize
the two length_scale parameters.

muygps_anisotropic = MuyGPS(
kernel=Matern(
smoothness=sim_smoothness,
deformation=Anisotropy (
12,
length_scale=VectorParameter(
Parameter("log_sample”, (0.01, 1.0)),
Parameter("log_sample"”, (0.01, 1.0)),
s
)
)
noise-measurement_noise,
scale=AnalyticScale(),

We will also create and optimze an isotropic model for comparison.

muygps_isotropic = MuyGPS(
kernel=Matern(
smoothness=sim_smoothness,
deformation=Isotropy(
12,
length_scale=Parameter("log_sample", (0.01, 1.0)),
)
),

noise-measurement_noise,

We build our difference tensors as usual and use Bayesian optimization. Note that there is a difference between the
crosswise and pairwise tensors that we create here, versus those we create for an isotropic kernel. Anisotropic models
create difference tensors rather than distance tensors, which have an extra dimension recording the feature dimension-
wise comparisons (in this case, differences) between the items being compared. This is an important distinction, as
anisotropic models need to record feature-dimension-wise comparisons to be scaled by trainable parameters, whereas
isotropic models do not and collapse differences directory into distances.

98 Chapter 1. Citation

MuyGPyS, Release beta

[16]: (

batch_crosswise_diffs,
batch_pairwise_diffs,

batch_targets,

batch_nn_targets,

) = muygps_anisotropic.make_train_tensors(

batch_indices,

batch_nn_indices,

train_features,

train_responses,

Keyword arguments for the optimization:

[17]: opt_kwargs = {
"loss_fn": lool_fn,
"verbose": True,
"random_state": 1,
"init_points": 5,
"n_iter": 30,
"allow_duplicate_points": True,

[18]: muygps_anisotropic = Bayes_optimize(
muygps_anisotropic,
batch_targets,
batch_nn_targets,
batch_crosswise_diffs,
batch_pairwise_diffs,
**opt_kwargs,

)

parameters to be optimized: ['length_scale®',
bounds: [[0.01 1.]

[0.01 1. 1]
initial x0: [0.07655293 0.30564372]

| iter | target | length... | length...
| 1 | 574.8 | .07655 | 0.3056
| 2 | 440.2 | 0.4229 | 0.7231
| 3 | 301.6 | 0.01011 | ©.3093
| 4 | 251.9 | ©.1553 | 0.1014
| 5 | 458.9 | ©.1944 | .3521
| 6 | 389.5 | 0.4028 | ©.5434
| 7 | 562.3 | 0.1177 | ©.3752
| 8 | 273.3 | 0.8317 | 0.6635
| 9 | 580.4 | ©.1578 | 0.6325
| 10 | 559.3 | 9.09521 | .7611
| 11 | 125.1 | 0.4017 | ©.1698
| 12 | 585.8 | 0.1279 | 0.694
| 13 | 283.7 | 0.438 | ©.3585
| 14 | 499.2 | 0.04607 | 0.6306
| 15 | 373.6 | 8.5577 | 0.705

'length_scalel']

(continues on next page)

1.10. Anisotropic Metric Tutorial

99

[19]:

[20]:

[21]:

MuyGPyS, Release beta

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

532.
586.
571.
540.
566.
499.
-555.4
321.
401.
569.
580.
142.
247.
218.
337.
269.
420.
513.
575.
516.
493,

== NN

NN ONOVOUS P RERE NSV OW

(= — I — R — I — I — R — R — B — I — I o U — I — I — R —

.157
.1351
.228
.1101
.2759
.4303

.6919
.2273
.1583

.01

.6718
.4668
.9954
.5595
.3559
.1804
.2717
.1228

(= — I N — R N A — A A — I — I — R — R R —]

.4126
.6988
.8591
.9515
.9977
.9782
.01

.8345
.6301
.4731

.4214
.4931
.7852
.8803
.8713
.9957
.6678
.2604

print(f"BayesianOptimization finds an optimimal pair of length scales:
—.anisotropic.kernel.deformation.length_scale()}")

BayesianOptimization finds an optimimal pair of length scales:

(continued from previous page)

muygps_

[0.13513486 0.69879261]

Note here that these returned length scale values might be a little different than what we used to sample the surface.
This can be due to a few factors: 1. optimizer might not have run enough iterations to converge, or 2. there is some
mutual unidentifiability between the length scale parameters and the variance scale parameter.

However, length_scale® < length_scalel as expected.

We also optimize the isotropic benchmark. Notice that we need to construct new distance tensors for the isotropic

model.

(
batch_crosswise_dists,
batch_pairwise_dists,

—_
—_

) = muygps_isotropic.make_train_tensors(
batch_indices,
batch_nn_indices,
train_features,
train_responses,

)

muygps_isotropic = Bayes_optimize(

muygps_isotropic,
batch_targets,
batch_nn_targets,

(continues on next page)

100

Chapter 1. Citation

[22]:

MuyGPyS, Release beta

)

batch_crosswise_dists,
batch_pairwise_dists,

“*opt_kwargs,

parameters to be optimized:
bounds:

initial xO0:

-3.343e+0
-3.484e+0
-2.103e+0
-151.5

-903.6

324.
249.

00 N O VT b W DN =

WWWWwwWwwWNNNNNNNNNNRRRR R 2 B R & 2 O
O D WNROWOONOOUBEWNRWOWOONOO U D WNR S

iter

[[0.01 1.
[0.83917142]
target

5
6

72.52

334.
338.
339.
339.
327.
340.
340.
340.
338.
339.
340.
338.
290.
339.
340.
338.
340.
340.
339.
340.
340.
339.
339.
340.
339.
340.
340.
339.

5

B WO ww N hoRLr NSO R O W 00 & Wwhhowwwo N

(== I — R — R — R — R R R R R N — N N I A R A A A — = R = N — I — R R — N I~ A= I~

['length_scale']

(continued from previous page)

print(f"BayesianOptimization finds that the optimimal isotropic length scale is {muygps_
—.isotropic.kernel.deformation.length_scale()}")

BayesianOptimization finds that the optimimal isotropic length scale is 0.
—13350674734009632

1.10. Anisotropic Metric Tutorial 101

[23]:

[24]:

[25]:

MuyGPyS, Release beta

We see here that when fixed to an isotropic length scale, Bayesian optimization tends to favor the smallest true length
scale. We’ll see how this affects modeling, prediction, and uncertainty quanlity below.

We separately optimize the scale variance scale parameter for each model.

muygps_anisotropic = muygps_anisotropic.optimize_scale(
batch_pairwise_diffs, batch_nn_targets

)

muygps_isotropic = muygps_isotropic.optimize_scale(
batch_pairwise_diffs, batch_nn_targets

1.10.3 Inference

As in the Univariate Regression Tutorial, we must realize difference tensors formed from the testing data and apply
them to form Gaussian process predictions for our problem.

test_count, _ = test_features.shape
indices = np.arange(test_count)
test_nn_indices, _ = nbrs_lookup.get_nns(test_features)
(
test_crosswise_diffs,
test_pairwise_diffs,
test_nn_targets,
) = muygps_anisotropic.make_predict_tensors(
indices,
test_nn_indices,
test_features,
train_features,
train_responses,

test_crosswise_dists,
test_pairwise_dists,
—
) = muygps_isotropic.make_predict_tensors(
indices,
test_nn_indices,
test_features,
train_features,
train_responses,

As in the Univariate Regression Tutorial we will evaluate the prediction performance of our models in terms of RMSE,
mean diagonal posterior variance, the mean 95% confidence interval size, and the coverage, which ideally should be
near 95%.

Kcross_anisotropic = muygps_anisotropic.kernel (test_crosswise_diffs)
Kin_anisotropic = muygps_anisotropic.kernel(test_pairwise_diffs)

predictions_anisotropic = muygps_anisotropic.posterior_mean(
Kin_anisotropic, Kcross_anisotropic, test_nn_targets

(continues on next page)

102 Chapter 1. Citation

[26]:

[27]:

[27]:

[28]:

MuyGPyS, Release beta

(continued from previous page)

variances_anisotropic = muygps_anisotropic.posterior_variance(

Kin_anisotropic, Kcross_anisotropic
)
confidence_intervals_anisotropic = np.sqrt(variances_anisotropic) * 1.96
coverage_anisotropic = (

np.count_nonzero(

np.abs(test_responses - predictions_anisotropic) < confidence_intervals_

—,anisotropic

) / test_count

We also evaluate the isotropic model

Kcross_isotropic = muygps_isotropic.kernel(test_crosswise_dists)
Kin_isotropic = muygps_isotropic.kernel(test_pairwise_dists)

predictions_isotropic = muygps_isotropic.posterior_mean(Kin_isotropic, Kcross_isotropic,..
—test_nn_targets)

variances_isotropic = muygps_isotropic.posterior_variance(Kin_isotropic, Kcross_
—isotropic)

confidence_intervals_isotropic = np.sqrt(variances_isotropic) * 1.96
coverage_isotropic = (
np.count_nonzero (
np.abs(test_responses - predictions_isotropic) < confidence_intervals_isotropic
) / test_count

1.10.4 Results comparison

A comparison of our trained models reveals that the anisotropic kernel gets close to the true (0.1, 0.5) length scale,
whereas the isotropic model has to learn a single parameter that has to split the difference somehow. This results in
both a higher RMSE and larger confidence intervals in order to achieve similar coverage.

print_results(

test_responses,

("anisotropic", muygps_anisotropic, predictions_anisotropic, variances_anisotropic,..
—.confidence_intervals_anisotropic, coverage_anisotropic),

("isotropic", muygps_isotropic, predictions_isotropic, variances_isotropic,.
—confidence_intervals_isotropic, coverage_isotropic),

)

<pandas.io.formats.style.Styler at 0x7fe279aa7a30>

This dataset is low-dimensional so we can plot our predictions and visually evaluate their performance. We plot below
the expected (true) surface, and the surface that our model predicts. Note that they are visually similar and major trends
are captured, although there are some differences.

sampler.plot_predictions(("Anisotropic", predictions_anisotropic), ("Isotropic",.
—predictions_isotropic))

1.10. Anisotropic Metric Tutorial 103

MuyGPyS, Release beta

Anisotropic Surface

Expected Surface Isotropic Surface

AXis 1
o
Axis 1
o
Axis 1

As we can see, the anisotropic model learns a surface that is much visually closer to what is expected. In particular,
the isotropic surface has blobby circular features as it to be expected, as it is unable to differentiate between distances
along the different axes.

We will also investigate more details information about the errors. Below we produce three plots that help us to under-
stand our results. The left plot shows the residual, which is the difference between the true values and our expectations.
The middle plot shows the magnitude of the 95% confidence interval. The larger the confidence interval, the less cer-
tain the model is of its predictions. Finally, the right plot shows the difference between the 95% confidence interval
length and the magnitude of the residual. All of the points larger than zero (in red) are not captured by the confidence
interval. Hence, this plot shows our coverage distribution.

[29]: sampler.plot_errors(
("Anisotropic", predictions_anisotropic, confidence_intervals_anisotropic),
("Isotropic", predictions_isotropic, confidence_intervals_isotropic),

D)
Anisotropic residual Anisotropic Cl Magnitude | |, Anisotropic |Residual| - CI
1.0 F 10
12
Fos 10 o5
— 0.8 —
] oo i Rl 0.0
x >
< <
0.6
L 0.5 F—0.5
0.4
-1.0 0.2 -1.0
AXis 0 AXis 0
0.0
Isotropic residual 14 Isotropic |Residual| - Cl
1.0 1.0
12
Fos 10 |05
— 08 —
pL 0.0 : Rl 0.0
* >
< ' 0.6 <
L o5 F—0.5
0.4
i i -1.0 0.2 -1.0
Axis 0 Axis 0

104 Chapter 1. Citation

[2]:

[3]:

[4]:

MuyGPyS, Release beta

The rightmost columns shows that the anisotropic assumptions both obtains lower residuals, i.e. the posterior means
are more accurate. The middle column shows that the the posterior variances (and resulting confidence intervals) are
smaller, and therefore the anisotropic model is also more confident in its predictions. Finally, the rightmost plot reveals
the uncovered points - all red-scale residuals exceed the confidence interval. Not only does the isotropic model appear
to have more uncovered points, they tend to be further outside of the confidence interval than those of the anisotropic
model. These results demonstrate the importance of correct model assumptions, both on predictions and uncertainty
quantification.

Copyright 2021-2023 Lawrence Livermore National Security, LLC and other MuyGPyS Project Developers. See the
top-level COPYRIGHT file for details.

SPDX-License-Identifier: MIT

1.11 Loss Function Tutorial

This notebook illustrates the loss functions available in the MuyGPyS library. These functions are used to formulate the
objective function to be optimized while fitting hyperparameters, and so have a large effect on the outcome of training.
We will describe each of these loss functions and plot their behaviors to help the user to select the right loss for their
problem.

Each function in this notebook is available for import from MuyGPyS.optimize.loss, and is an object of class
MuyGPyS.optimize.loss.LossFn. It is possible to define new loss functions by creating a new LossFn object.
View its documentation for more details.

We assume throughout a vector of targets ¥, a prediction (posterior mean) vector u, and a posterior variance vector o
for a training batch B with b elements.

import matplotlib.pyplot as plt
import numpy as np

import cblind as cb

from matplotlib.colors import SymLogNorm, LogNorm

from MuyGPyS.optimize.loss import mse_fn, cross_entropy_fn, lool_fn, pseudo_huber_x£n,..
—looph_£n

plt.style.use('tableau-colorblindl10')

mmax = 3.0

mmin = 0.0

residual_count = 100

ys = np.zeros(residual_count)

residuals = np.linspace(mmin, mmax, residual_count)
smax = 3.0

smin = le-1

variance_count = 100

variances = np.linspace(smin, smax, variance_count)
unitary_scale=np.ones(1)

1.11. Loss Function Tutorial 105

[5]:

MuyGPyS, Release beta

1.11.1 Variance-free Loss Functions

MuyGPyS features several loss functions that depend only upon the targets y and posterior mean predictions /i of your
training batch. These loss functions are situationally useful, although they leave the fitting of variance parameters
entirely up to the separate, scale optimization functions and might not be sensitive to certain variance parameters.
As they do not require evaluating the posterior variance S or optimizing the variance scale parameter o2, these loss
functions are generally more efficient to use in practice.

Mean Squared Error (mse_1£n)

The mean squared error (MSE) or /5 loss is a classic loss function that computes

Cvise(f; y) = %Z(ﬂz —ui)”.

i€B
The following plot illustrates the MSE as a function of the residual.

fig, ax = plt.subplots(l, 1, figsize=(4,3))

ax.set_title("MSE as a function of the residual"”, fontsize=20)
ax.set_ylabel("loss", fontsize=15)

ax.set_xlabel (r"$\vert \bar{\mu}_i - y_i \vert$", fontsize=15)

mses = np.array([mse_fn(ys[i], residuals[i]) for i in range(residual_count)])
ax.plot(residuals, mses)

plt.show()

MSE as a function of the residual

loss

T
0.0 0.5 1.0 15 2.0 25 3.0

i — Yil

106 Chapter 1. Citation

[6]:

MuyGPyS, Release beta

Cross Entropy Loss (cross_entropy_fn)

The cross entropy loss is a classic classification loss often used in the fitting of neural networks. For targets in {0, 1},
the library first transforms the predictions to be row-stochastic and then computes

Leross- -entropy ,U y Z Yi IOg Nz 1 — ;) log(1 — :ul>
i€B

This section is under construction.

Pseudo-Huber Loss (pseudo_huber_£fn)

The pseudo-Huber loss is a smooth approximation to the Huber loss, which is approximately quadratic (¢5 loss) for
small residuals and approximately linear (¢; loss) for large residuals. This means that the pseudo-Huber loss is less
sensitive to large outliers, which might otherwise force the optimizer to overcompensate in undesirable ways. The
pseudo-Huber loss computes

2
Lpseudo-Huber (1, Y | 0) 252 1+ (:ul 5 %) 1,

where ¢ is a parameter that indicates the scale of the boundary between the quadratic and linear parts of the function.
The pseudo_huber_f£n accepts this parameter as the boundary_scale keyword argument. Note that the scale of §
depends on the units of y and /i. The following plots show the behavior of the pseudo-Huber loss for a few values of §.

boundary_scales = [0.5, 1.0, 2.5]
phs = np.array([
[pseudo_huber_fn(ys[i], residuals[i], boundary_scale=bs) for i in range(residual_
—count)]
for bs in boundary_scales
D
fig, ax = plt.subplots(l, 1, figsize=(4, 3))
for i, ax in enumerate(axes):
ax.set_title(f"Pseudo-Huber", fontsize=20)
ax.set_ylabel("loss", fontsize=15)
ax.set_xlabel (r"$\vert \bar{\mu}_i - y_i \vert$", fontsize=15)
ax.plot(residuals, phs[0, :], linestyle="solid", label=f"$\delta = {boundary_scales[0]'$
-
ax.plot(residuals, phs[1, :], linestyle="dotted", label=f"$\delta = {boundary_scales[1]}$
-
ax.plot(residuals, phs[2, :], linestyle="dashed", label=f"$\delta = {boundary_scales[2]}$
(_‘H)
ax.legend()
plt.show()

1.11. Loss Function Tutorial 107

https://en.wikipedia.org/wiki/Huber_loss

[77:

[8]:

MuyGPyS, Release beta

Pseudo-Huber

— =05
3.0 6=1.0
0=25

3.5 1

2.5 1

2.0 7

loss

1.5 1
1.0 1
0.5 1

0.0 —
! ! ! I
00 05 10 15 20 25 3.0

i — Vil

Coincidence of pseudo-Huber and MSE for relatively small residuals

For large boundary scales relative the residual magnitude, the pseudo-Huber function converges to 1/2 of the ¢ loss
or mean squared error, as show by the next figure. This convergence is relative to the scale of the residual, and so the
value of the boundary scale is informed by the data distribution and requires the user to reason about the breakpoint
where residuals are likely to be unreasonably large. Similarly, when § = 1 the pseudo-huber loss is parallel to /; loss
for larger residuals.

def 11_£n(
predictions: np.ndarray,
targets: np.ndarray,
) -> float:
return np.sum(np.abs(predictions - targets))

1l1s = np.array([1l1_fn(ys[i], residuals[i]) for i in range(residual_count)])

100.0
1.0

big_boundary_scale

sml_boundary_scale

big_ph = np.array([
pseudo_huber_fn(ys[i], residuals[i], boundary_scale=big_boundary_scale)
for i in range(residual_count)

D

sml_ph = np.array([
pseudo_huber_fn(ys[i], residuals[i], boundary_scale=sml_boundary_scale)
for i in range(residual_count)

D

fig, axes = plt.subplots(l, 2, figsize=(8,3))

axes[0].set_title("MSE comparison", fontsize=20)

axes[0].set_ylabel("loss", fontsize=15)

(continues on next page)

108 Chapter 1. Citation

MuyGPyS, Release beta

loss

(continued from previous page)

.set_xlabel (r"$\vert \bar{\mu}_i - y_i \vert $", fontsize=15)
.plot(residuals, mses / 2, linestyle="dashed", label=f"MSE / 2")
.plot(residuals, big_ph, linestyle="dotted", label=f"$\delta =

big_boundary_

.plot(residuals, 11s, linestyle="dashed", label="ℓ_1 loss")
.plot(residuals, sml_ph, linestyle="dotted", label=f"$\delta =

sml_boundary_

L1 comparison

3.0

2.5

2.0

1.5

1.0

0.5

0.0

—== [loss ’
o=1.0 4

axes[0]
axes[0]
axes[0]
—scale’$™
axes[0].legend()
axes[1].set_title("L1l comparison", fontsize=20)
axes[1].set_ylabel("loss", fontsize=15)
axes[1].set_xlabel(r"$\vert \bar{\mu}_i - y_i \vert$", fontsize=15)
axes[1]
axes[1]
—scalel$™)
axes[1].legend()
plt.show()
MSE comparison
—-=- MSE /2 ;
] Fd
4 5=100.0 !
3 ‘ff
wn i
u #
O 24 /
rFa
#
L
1+ EJ‘
0d oo
T T T T
0 1 2 3

\di = yil

1.11.2 Variance-Sensitive Loss Functions

MuyGPyS also includes loss functions that explicitly depend upon the posterior variances ¥, which is a diagonal matrix
for a univariate MuyGPs model. These loss functions penalize large variances, and so tend to be more sensitive to
variance parameters. This comes at increasing the cost of the linear algebra involved in each evaluation of the objective
function by a constant factor. This causes an overall increase in compute time per optimization loop, but that is often
a worthwhile trade for sensitivity in practice.

¥ involves multiplying the unscaled MuyGPS variance by the % variance scaling parameter, which at present must by
optimized during each evaluation of the objective function.

1.11.

Loss Function Tutorial

109

[9]:

[10]:

[11]:

[12]:

[13]:

MuyGPyS, Release beta

Leave-One-Out Loss (lool_x£n)

The leave-one-out-loss or lool scales and regularizes the MSE to make the loss more sensitive to parameters that

primarily act on the variance. lool computes
T — :)2 _
glool(ﬂa Y, E) = Z (lhz:”yl) + log 21,7,
i€B
The next plot illustrates the loss as a function of both the residual and of 2.

lools = np.array([

[
lool_fn(
ys[il,
residuals[i],
variances[variance_count - 1 - j],
unitary_scale,
)
for i in range(residual_count)
]

for j in range(variance_count)

D

variance_vis_values = [0.5, 1.0, 1.5]
variance_vis_points list(Q)
var_iter = 0
for i, var in enumerate(variances):
if var_iter >= len(variance_vis_values):
break
if var > variance_vis_values[var_iter]:
variance_vis_points.append([variance_count - 1 - i, var])
var_iter += 1

residual_vis_values = [0.25, 0.75, 1.25]
residual_vis_points listQ
res_iter = 0
for i, res in enumerate(residuals):
if res_iter >= len(residual_vis_values):
break
if res > residual_vis_values[res_iter]:
residual_vis_points.append([i, res])
res_iter += 1

style_count = len(variance_vis_values) + len(residual_vis_values)
colors, linestyles = cb.Colorplots().cblind(style_count)

colors = colors[:style_count]

linestyles = linestyles[:style_count]

linestyles = list(reversed(linestyles))

fig, axes = plt.subplots(l, 3, figsize=(12, 4))
axes[0].set_title("lool", fontsize=20)
axes[0].set_ylabel (r"$\bar{\Sigma}_ $", fontsize=15)

(continues on next page)

110

Chapter 1. Citation

MuyGPyS, Release beta

(continued from previous page)

axes[0].set_xlabel (r"$\vert \bar{\mu}_i - y_i \vert$", fontsize=15)
im = axes[0].imshow(

lools, extent=[mmin, mmax, smin, smax], norm=SymLogNorm(le-1), cmap="coolwarm"
)
fig.colorbar(im, ax=axes[0])
axes[0].plot(residuals, variance_count * [variance_vis_points[0][1]], color=colors[0],.
—linestyle=linestyles[0])
axes[0].plot(residuals, variance_count * [variance_vis_points[1][1]], color=colors[1],.
—linestyle=linestyles[1])
axes[0] .plot(residuals, variance_count * [variance_vis_points[2][1]], color=colors[2],.
—linestyle=linestyles[2])
axes[0].plot(residual_count * [residual_vis_points[0][1]], variances, color=colors[3],.
—linestyle=linestyles[3])
axes[0] .plot(residual_count * [residual_vis_points[1][1]], variances, color=colors[4],.
—linestyle=linestyles[4])
axes[0] .plot(residual_count * [residual_vis_points[2][1]], variances, color=colors[5],.
—»1linestyle=linestyles[5])

axes[1].set_title("lool residual cross-section", fontsize=14)
axes[1].set_ylabel("lool", fontsize=15)
axes[1].set_xlabel(r"$\vert \bar{\mu}_i - y_i \vert $", fontsize=15)
axes[1].plot(

residuals,

lools[variance_vis_points[0][0], :],

color=colors[0],

linestyle=linestyles[0],

label=r"$\bar{\Sigma}_ = §" + f"{variance_vis_points[0][1]:.2f}",
)
axes[1].plot(

residuals,

lools[variance_vis_points[1][0], :],

color=colors[1],

linestyle=linestyles[1],

label=r"$\bar{\Sigma}_ = $" + f"{variance_vis_points[1][1]:.2f}",
)
axes[1].plot(

residuals,

lools[variance_vis_points[2][0], :],

color=colors[2],

linestyle=linestyles[2],

label=r"$\bar{\Sigma}_ = $" + f"{variance_vis_points[2][1]:.2f}",
)
axes[1].legend()

axes[2].set_title("lool, variance cross-section", fontsize=14)
axes[2].set_ylabel("lool", fontsize=15)
axes[2].set_xlabel (r"$\bar{\Sigma}_ $", fontsize=15)
axes[2] .plot(
variances,
np.flip(lools[:, residual_vis_points[0][0]]),
color=colors[3],
linestyle=linestyles[3],

(continues on next page)

1.11. Loss Function Tutorial 111

MuyGPyS, Release beta

(continued from previous page)

label=r"$\vert \bar{\mu}_i - y_i \vert = $" + f"{residual_vis_points[0][1]:.2f}",

)
axes[2].plot(

variances,

np.flip(lools[:, residual_vis_points[1][0]]),

color=colors[4],

linestyle=linestyles[4],

label=r"$\vert \bar{\mu}_i - y_i \vert = $" + f"{residual_vis_points[1][1]:.2f}",
)
axes[2].plot(

variances,

np.flip(lools[:, residual_vis_points[2][0]]),

color=colors[5],

linestyle=linestyles[5],

label=r"$\vert \bar{\mu}_i - y_i \vert = $" + f"{residual_vis_points[2][1]:.2f}",
)

axes[2].legend()

plt.tight_layout()

plt.show()
lool residual cross-section lool, variance cross-section
17.5]
|00| e ;=051 1 |di —yi|=0.27
1ot 15.0 1 i,=1.01 12 = - |Ai-yi|=076
L 100 1251~ m=is1 10 — lG-yl=127
. 10.0 A 8
10 5 : 5 .
S 754 g o
- 0 k.-". - i
5.0 q - 4
; -
- 2
r-10"1 2.5 o
100 0.09 T '
e 10 T T T T T T T _2 _I T T T T T T
& = yil 00 05 1.0 15 20 25 3.0 00 05 1.0 15 20 25 3.0
| = il I

Notice that the cross-section of the lool surface for a fixed o is quadratic, while the cross section of the lool surface for
a fixed residual is logarithmic. For small enough residuals, this curve inverts and assumes negative values for small o.

Leave-One-Out Pseudo-Huber (looph_£n)

The leave-one-out pseudo-Huber loss (looph) is similar in nature to the lool, but is applied to the pseudo-Huber loss
instead of MSE. looph computes

S)
Croopn (71,9, 2 | 8) = 2262 1+(“j52—§?)—1 +log s,

where again ¢ is the boundary scale.

Note that unlike in the pseudo-Huber, here the boundary scale ¢ is unitless. § specifies how large the residual must be, in
multiples of the standard deviation, for the loss to become approximately linear instead of approximately quadratic. As
such, there is no need for most applications to set d, which the library defaults to 3.0. This implies that only residuals
that are larger than 3 standard deviations are treated as outliers.

112 Chapter 1. Citation

[14]:

[15]:

MuyGPyS, Release beta

The next plots illustrate the looph as a function of the residual, o, and § for § € {0.5,3.0}. The plots for the smaller &

value illustrates why J should not be small.

loo_boundary_scales = np.array([0.5, 3.0])
loophs = np.array([

[
[
looph_£n(
ys[il],
residuals[i],
variances[variance_count - 1 - j],
unitary_scale,
boundary_scale=bs
)
for i in range(residual_count)
]
for j in range(variance_count)
]

for bs in loo_boundary_scales

D

fig, axes = plt.subplots(2, 3, figsize=(14, 4 * len(loo_boundary_scales)))
for i, bs in enumerate(loo_boundary_scales):
axes[i, 0].set_title(f"looph ($\delta={bs}$)", fontsize=20)
axes[i, 0].set_ylabel(r"$\bar{\Sigma}_ $", fontsize=15)
axes[i, 0].set_xlabel(r"$\vert \bar{\mu}_i - y_i \vert$", fontsize=15)
im = axes[i, 0].imshow(

loophs[i, :, :], extent=[mmin, mmax, smin, smax], norm=SymLogNorm(le-1), cmap=

—"coolwarm"

)

fig.colorbar(im, ax=axes[i, 0])

axes[i, 0].plot(residuals, variance_count * [variance_vis_points[0][1]],.
—color=colors[0], linestyle=linestyles[0])

axes[i, 0].plot(residuals, variance_count * [variance_vis_points[1][1]],.
—color=colors[1], linestyle=linestyles[1])

axes[i, 0].plot(residuals, variance_count * [variance_vis_points[2][1]],.
—,color=colors[2], linestyle=linestyles[2])

axes[i, 0].plot(residual_count * [residual_vis_points[0][1]], variances,.
—color=colors[3], linestyle=linestyles[3])

axes[i, 0].plot(residual_count * [residual_vis_points[1][1]], variances,.
—color=colors[4], linestyle=linestyles[4])

axes[i, 0].plot(residual_count * [residual_vis_points[2][1]], variances,.
—color=colors[5], linestyle=linestyles[5])

axes[i, 1].set_title(f"looph residual cross-section ($\delta={bs}$)", fontsize=14)

axes[i, 1].set_ylabel("looph", fontsize=15)
axes[i, 1].set_xlabel(r"$\vert \bar{\mu}_i - y_i \vert$", fontsize=15)
axes[i, 1].plot(

residuals,

loophs[i, variance_vis_points[0][0], :],

color=colors[0],

linestyle=linestyles[0],

label=r"$\bar{\Sigma}_ = $" + f"{variance_vis_points[0][1]:.2f}",

(continues on next page)

1.11. Loss Function Tutorial

113

MuyGPyS, Release beta

(continued from previous page)

)
axes[i, 1].plot(

residuals,

loophs[i, variance_vis_points[1][0], :],

color=colors[1],

linestyle=linestyles[1],

label=r"$\bar{\Sigma}_ = $" + f"{variance_vis_points[1][1]:.2f}",
)
axes[i, 1].plot(

residuals,

loophs[i, variance_vis_points[2][0], :],

color=colors[2],

linestyle=linestyles[2],

label=r"$\bar{\Sigma}_ = $" + f"{variance_vis_points[2][1]:.2f}",
)
axes[i, 1].legend()

axes[i, 2].set_title(f"looph variance cross-section ($\delta={bs}$)", fontsize=

axes[i, 2].set_ylabel("looph", fontsize=15)

axes[i, 2].set_xlabel(r"$\bar{\Sigma}_ $", fontsize=15)
axes[i, 2].plot(

variances,

np.flip(loophs[i, :, residual_vis_points[0][0]]),

color=colors[3],
linestyle=linestyles[3],
label=r"$\vert \bar{\mu}_i - y_i \vert = $" + f"{residual_vis_points[0][1]

)
axes[i, 2].plot(

variances,

np.flip(loophs[i, :, residual_vis_points[1][0]]),

color=colors[4],

linestyle=linestyles[4],

label=r"$\vert \bar{\mu}_i - y_i \vert = $" + f"{residual_vis_points[1][1]
)
axes[i, 2].plot(

variances,

np.flip(loophs[i, :, residual_vis_points[2][0]]),

color=colors[5],

linestyle=linestyles[5],

label=r"$\vert \bar{\mu}_i - y_i \vert = $" + f"{residual_vis_points[2][1]
)

axes[i, 2].legend()

plt.tight_layout()
plt.show()

14)

L g

211",

BN g

114 Chapter 1. Citation

[16]:

MuyGPyS, Release beta

looph (6 =0.5)

0.0 0.5 1.0 15

@i = yi|
looph (6 = 3.0)

2.0 25

3.0

2.5

2.0

15

Lo

0.5

0.0 0.5 1.0 15

i = yil

20 25 30

3.0

—10-!

—100

looph

looph

3.0 9 e

2.5

2.01

1.5 4

1.0+

0.5 4

0.0

looph residual cross-section (6 = 0.5)

3,=0.51
5;=1.01
— ;=151

T T T T T T
0.5 10 15 2.0 2.5 3.0

1@ = yil
looph residual cross-section (6 = 3.0)
~ Z;=0.51
5;=1.01
- §;=1.51

T T T T
15 2.0 2.5 3.0

14 = yil

T T T
0.0 0.5 10

looph

looph

-2

looph variance cross-section (6 =0.5)

& - yi| =027
— - |-y|=076

— |m-y|=127
; -

T T T
Lo 15 2.0 25 3.0

Zjj
looph variance cross-section (6 = 3.0)
| — yi| =0.27
= - |gi-y|=076

— |m-wl=127

T T T T T T
0.0 0.5 10 15 2.0 25 3.0

Zjj

These plots show us that the looph function can exhibit a more exaggerated upward slope where the residual is in the
linear component of the pseudo-Huber curve but is not so large that it still outweighs the variance component of the
loss. Note that in practice that both pseudo Huber loss functions may require more training iterations to converge than

their alternatives.

Comparison between lool and looph

Here we compare looph to lool for differing the boundary_scales. We see that, similar to the original pseudo-Huber,
the looph also converges to lool as the boundary_scale grows large. Similarly, looph’s loss for a fixed variance

becomes linear when (”'E—W

compare_boundary_scales =

compare_loophs =

exceeds the boundary_scale.

np.array([3.0, 20.0])
np.array([

variances[variance_count - 1 - j],

for i in range(residual_count)

[
[
looph_£n(
ys[il,
residuals[i],
unitary_scale,
boundary_scale=bs,
)
]
for j in range(variance_count)
]

for bs in compare_boundary_scales

D

(continues on next page)

1.11. Loss Function Tutorial

115

MuyGPyS, Release beta

(continued from previous page)

fig, axes = plt.subplots(2, 3, figsize=(14, 4 * len(compare_boundary_scales)))

for i, bs in enumerate(compare_boundary_scales):

axes[i, 0].set_title(f"|lool - looph| (δ = {bs})", fontsize=14)

axes[i, 0].set_ylabel(r"$\bar{\Sigma}_ $", fontsize=15)

axes[i, 0].set_xlabel(r"$\vert \bar{\mu}_i - y_i \vert$", fontsize=15)

im = axes[i, 0].imshow(

np.abs(lools - compare_loophs[i, :, :]), extent=[mmin, mmax, smin, smax], cmap=

~"cb.iris", norm=LogNorm(le-1)

)

fig.colorbar(im, ax=axes[i, 0])

axes[i, 0].plot(residuals, variance_count * [variance_vis_points[0][1]],.
—color=colors[0], linestyle=linestyles[-1])

axes[i, 0].plot(residuals, variance_count * [variance_vis_points[1][1]],.
—color=colors[1], linestyle=linestyles[-1])

axes[i, 0].plot(residuals, variance_count * [variance_vis_points[2][1]],.
—»color=colors[2], linestyle=linestyles[-1])

axes[i, 0].plot(residual_count * [residual_vis_points[0][1]], variances,.
—~color=colors[3], linestyle=linestyles[-1])

axes[i, 0].plot(residual_count * [residual_vis_points[1][1]], variances,.
<»~color=colors[4], linestyle=linestyles[-1])

axes[i, 0].plot(residual_count * [residual_vis_points[2][1]], variances,.
—,color=colors[5], linestyle=linestyles[-1])

axes[i, 1].set_title("lool/looph residual cross-section", fontsize=14)
axes[i, 1].set_ylabel("lool", fontsize=15)
axes[i, 1].set_xlabel(r"$\vert \bar{\mu}_i - y_i \vert$", fontsize=15)
axes[i, 1].plot(

residuals,

lools[variance_vis_points[0][0], :],

color=colors[0],

linestyle=linestyles[0],

label=r"lool, $\bar{\Sigma}_ = $" + f"{variance_vis_points[0][1]:.2f}",
)
axes[i, 1].plot(

residuals,

lools[variance_vis_points[1][0], :],

color=colors[1],

linestyle=linestyles[0],

label=r"lool, $\bar{\Sigma}_ = $" + f"{variance_vis_points[1][1]:.2f}",
)
axes[i, 1].plot(

residuals,

lools[variance_vis_points[2][0], :],

color=colors[2],

linestyle=linestyles[0],

label=r"lool, $\bar{\Sigma}_ = $" + f"{variance_vis_points[2][1]:.2f}",
)
axes[i, 1].plot(

residuals,

compare_loophs[i, variance_vis_points[0][0], :],

(continues on next page)

116 Chapter 1. Citation

MuyGPyS, Release beta

(continued from previous page)

color=colors[0],
linestyle=linestyles[2],

label=r"looph, $\bar{\Sigma}_ = $" + f"{variance_vis_points[0][1]:.2f}",
)
axes[i, 1].plot(

residuals,

compare_loophs[i, variance_vis_points[1][0], :],

color=colors[1],

linestyle=linestyles[2],

label=r"looph, $\bar{\Sigma}_ = $" + f"{variance_vis_points[1][1]:.2f}",
)
axes[i, 1].plot(

residuals,

compare_loophs[i, variance_vis_points[2][0], :],

color=colors[2],

linestyle=linestyles[2],

label=r"looph, $\bar{\Sigma}_ = $" + f"{variance_vis_points[2][1]:.2f}",
)

axes[i, 1].legend()

axes[i, 2].set_title("lool/looph variance cross-section", fontsize=14)
axes[i, 2].set_ylabel("lool", fontsize=15)
axes[i, 2].set_xlabel(r"$\bar{\Sigma}_ $", fontsize=15)
axes[i, 2].plot(
variances,
np.flip(lools[:, residual_vis_points[0][0]]),
color=colors[3],
linestyle=linestyles[0],
label=r"lool, $\vert \bar{\mu}_i - y_i \vert = $" + f"{residual_vis_points[0][1]

.2},
)
axes[i, 2].plot(
variances,
np.flip(lools[:, residual_vis_points[1][0]]),
color=colors[4],
linestyle=linestyles[0],
label=r"lool, $\vert \bar{\mu}_i - y_i \vert = $" + f"{residual_vis_points[1][1]
25
)
axes[i, 2].plot(
variances,
np.flip(lools[:, residual_vis_points[2][0]]),
color=colors[5],
linestyle=linestyles[0],
label=r"lool, $\vert \bar{\mu}_i - y_i \vert = $" + f"{residual_vis_points[2][1]
.2},
)
axes[i, 2].plot(
variances,
np.flip(compare_loophs[i, :, residual_vis_points[0][0]]),

color=colors[3],
linestyle=linestyles[2],

(continues on next page)

1.11. Loss Function Tutorial 117

MuyGPyS, Release beta

(continued from previous page)
label=r"looph, $\vert \bar{\mu}_i - y_i \vert = $" + f"{residual_vis_
points[0][1]:.2f}",
)
axes[i, 2].plot(
variances,
np.flip(compare_loophs[i, :, residual_vis_points[1][0]]),
color=colors[4],
linestyle=linestyles[2],
label=r"looph, $\vert \bar{\mu}_i - y_i \vert = $" + f"{residual_vis_
—points[1][1]:.2£}",
)
axes[i, 2].plot(
variances,
np.flip(compare_loophs[i, :, residual_vis_points[2][0]]),
color=colors[5],
linestyle=linestyles[2],
label=r"looph, $\vert \bar{\mu}_i - y_i \vert = $" + f"{residual_vis_
—points[2][1]:.2f}",
)
axes[i, 2].legend()

plt.tight_layout()

plt.show()
|lool - looph| (6 = 3.0) lool/looph residual cross-section lool/looph variance cross-section
3.0 17.5]
....... lool, £;=0.51 4 lool, |- yi| =027
25 15.0 lool, 5;;= 1.01 124 F e lool, |4~ yi| = 0.76
101 125 e ool i,J_: 1.51 104 1 * lool, |aj-jy,-\= 127
2.0 - looph, 2;=0.51 ’ looph, |d; — yi| = 0.27
10.0 1 looph, £;=1.01 811 ~ looph, |- yi| = 0.76
Wi 15 S ;5] = looph, £=151 g 69 0 = looph, |- yj| =127
100 e 4
1.0 4 = s
24 "‘:_ S ——
0.5 04
T ; i ; Ll o1 = 21 . . T . . T
00 05 10 15 20 25 30 00 05 10 15 20 25 30 0.0 0.5 10 15 2.0 2.5 3.0
| = yil &7 = yil Zjj
|lool - looph| (8 = 20.0) lool/looph residual cross-section lool/looph variance cross-section
3.0 17.5]
------- lool, £;=0.51 7 Al lool, |fi;— yi| = 027
254 15.0 1 lool, £;=1.01 ‘j‘ 124§ - lool, |- yi| = 0.76
£i= : e lool, | = yi| = 1.27
125 Iool, £j;=1.51 .-._f 10 i s i yil
2.0 — looph, £;=0.51 4 H looph, |d;— yi| = 0.27
I 10° 10.0 A looph, £, =1.01 s R — looph, |gi—yi| = 0.76
W 15 8 ;5] - looph E=151 4 S &9 | = looph, [gi—y|=127
o " o
- \
g ’_'__/ 44
1.0 e \
21 :\,_ e ="
0.5 o R
" i i i " — 107! . . 21
0.0 0.5 1.0 15 2.0 2.5 3.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 25 30

“Ji_yi‘

118 Chapter 1. Citation

MuyGPyS, Release beta

1.12 References

1.12. References 119

MuyGPyS, Release beta

120 Chapter 1. Citation

CHAPTER
TWO

INDICES AND TABLES

* genindex
* modindex

¢ search

121

MuyGPyS, Release beta

122 Chapter 2. Indices and tables

BIBLIOGRAPHY

[muyskens2021muygps] Muyskens, Amanda, Benjamin W. Priest, Iméne Goumiri, and Michael Schneider. “MuyGPs:
Scalable Gaussian Process Hyperparameter Estimation Using Local Cross-Validation.” arXiv preprint
arXiV:2104.14581 (2021).

[muyskens2021star] Muyskens, Amanda L., Iméne R. Goumiri, Benjamin W. Priest, Michael D. Schneider, Robert
E. Armstrong, Jason M. Bernstein, and Ryan Dana. “Star-Galaxy Image Separation with Computationally
Efficient Gaussian Process Classification.” arXiv preprint arXiv:2105.01106 (2021).

[dunton2022fast] Dunton, Alec M., Benjamin W. Priest, and Amanda Muyskens. “Fast Gaussian Process Poste-
rior Mean Prediction via Local Cross Validation and Precomputation.” arXiv preprint arXiv:2205.10879
(2022).

123

https://arxiv.org/abs/2104.14581
https://arxiv.org/abs/2105.01106
https://arxiv.org/abs/2205.10879

MuyGPyS, Release beta

124 Bibliography

m

MuyGPyS.
MuyGPyS.
MuyGPyS.
MuyGPyS.
.examples.two_class_classify_uq, 59
.gp.deformation.metric, 17
.gp.kernels.kernel_fn, 13
.gp.tensors, 8

.neighbors, 3

.optimize.batch, 33
.optimize.loss, 39
.optimize.objective, 43

MuyGPyS.

MuyGPyS
MuyGPyS
MuyGPyS
MuyGPyS
MuyGPyS
MuyGPyS
MuyGPyS
MuyGPyS

examples.classify, 54

examples. fast_posterior_mean, 50
examples.muygps_torch, 63
examples.regress, 44

torch.muygps_layer, 68

PYTHON MODULE INDEX

125

MuyGPyS, Release beta

126 Python Module Index

INDEX

Sym bols crosswise_tensor() (MuyG-

_call__ QO (MuyGPyS.gp.deformation.Anisotropy PyS.gp.deformation.Anisotropy method),
method), 7 7

__call__Q (MuyGPYyS.gp.deformation.Isotropy ~CToSswise_tensor () (MuyG-
method), 5 PyS.gp.deformation.Isotropy method), 6

__call__Q (MuyGPyS.gp. hyperparameter.scalar.Parametij
method), 11

__call__Q (MuyGPyS.gp.hyperparameter.scale.ScaleFn do_classify() (in module MuyG-
method), 12 PyS.examples.classify), 54

__call__Q (MuyGPyS.gp.hyperparameter.tensor.TensorPdantlassify_uq(Q) (in module MuyG-
method), 11 PyS.examples.two_class_classify_uq), 60

__call__Q (MuyGPyS.gp.kernels.kernel_fn.KernelFn do_fast_posterior_mean() (in module MuyG-
method), 14 PyS.examples.fast_posterior_mean), 50

_call__ 0O (MuyGPyS.gp.kernels.matern.Matern do_regress() (in module MuyGPyS.examples.regress),

method), 16
__call__ QO (MuyGPyS.gp.kernels.rbf. RBF method), 15

A

AnalyticScale (class in
PyS.gp.hyperparameter.scale), 12

Anisotropy (class in MuyGPyS.gp.deformation), 7

apply_length_scale() (MuyG-
PyS.gp.deformation.metric.MetricFn method),
17

MuyG-

B

batch_features_tensor() (in module MuyG-
PyS.gp.tensors), 8

classify_any() (in module MuyG-
PyS.examples.classify), 54

classify_two_class_uq() (in module MuyG-

PyS.examples.two_class_classify_uq), 59

cross_entropy_fn (in module MuyG-
PyS.optimize.loss), 39
crosswise_differences() (MuyG-

PyS.gp.deformation.metric.MetricFn method),
18

crosswise_distances() (MuyG-
PyS.gp.deformation.metric.MetricFn method),
18

44
do_uqQ (in module MuyG-

PyS.examples.two_class_classify_uq), 62

F

F2 (in module MuyGPyS.gp.deformation.metric), 17

fast_coefficients() (MuyG-
PyS.gp.multivariate_muygps.MultivariateMuyGPS
method), 29

fast_coefficients() (MuyGPyS.gp.muygps.MuyGPS
method), 23

fast_nn_update() (in module MuyGPyS.gp.tensors), 9

fast_posterior_mean() (MuyG-
PyS.gp.multivariate_muygps.Multivariate MuyGPS
method), 29

fast_posterior_mean() (MuyG-
PyS.gp.muygps.MuyGPS method), 24
fast_posterior_mean_any() (in module MuyG-

PyS.examples.fast_posterior_mean), 52

fixed) (MuyGPyS.gp.hyperparameter.scalar.Parameter
method), 11

fixed) (MuyGPyS.gp.hyperparameter.tensor.TensorParam
method), 11

fixed () (MuyGPyS.gp.multivariate_muygps.MultivariateMuyGPS

method), 30
fixed() (MuyGPyS.gp.muygps.MuyGPS method), 24

fixed () (MuyGPyS.gp.noise.heteroscedastic. HeteroscedasticNoise

method), 21

127

MuyGPyS, Release beta

FixedScale (class in
PyS.gp.hyperparameter.scale), 12

forward () (MuyGPyS.torch.muygps_layer.MuyGPs_layer
method), 69

MuyG-

full_filtered_batch() (in module MuyG-
PyS.optimize.batch), 33

G

get_balanced_batch() (in module MuyG-

PyS.optimize.batch), 33

get_batch_nns() (MuyGPyS.neighbors.NN_Wrapper
method), 4

get_bounds() (MuyG-
PyS.gp.hyperparameter.scalar. Parameter
method), 11

get_nns() (MuyGPyS.neighbors. NN_Wrapper method),
4

get_opt_fn(Q) (MuyG-
PyS.gp.hyperparameter.scale.AnalyticScale
method), 13

get_opt_fn(Q) (MuyG-
PyS.gp.hyperparameter.scale. FixedScale

method), 12

get_opt_£fn(Q) (MuyGPyS.gp.kernels.matern.Matern
method), 16

get_opt_fn() (MuyGPyS.gp.kernels.rbf.RBF method),
15

get_opt_mean_fn() (MuyGPyS.gp.muygps.MuyGPS
method), 24

get_opt_params() (MuyG-
PyS.gp.kernels.kernel_fn.KernelFn method),
14

get_opt_params() MuyG-
PyS.gp.kernels.matern.Matern method),
16

get_opt_params() (MuyGPyS.gp.muygps.MuyGPS
method), 24

get_opt_var_fn(Q) (MuyGPyS.gp.muygps.MuyGPS
method), 25

H

HeteroscedasticNoise (class in MuyG-
PyS.gp.noise.heteroscedastic), 21
HomoscedasticNoise (class in MuyG-

PyS.gp.noise.homoscedastic), 20

Isotropy (class in MuyGPyS.gp.deformation), 5

K

KernelFn (class in MuyGPyS.gp.kernels.kernel_fn), 14

L

12 (in module MuyGPyS.gp.deformation.metric), 19

lool_fn (in module MuyGPyS.optimize.loss), 39

lool_£fn_unscaled (in module
PyS.optimize.loss), 40

looph_1£n (in module MuyGPyS.optimize.loss), 40

LossFn (class in MuyGPyS.optimize.loss), 39

M

make_classifier() (in
PyS.examples.classify), 56

make_fast_multivariate_regressor() (in module
MuyGPyS.examples.fast_posterior_mean), 53

make_fast_predict_tensors() (in module MuyG-
PyS.gp.tensors), 9

make_fast_regressor() (in module
PyS.examples.fast_posterior_mean), 53

make_heteroscedastic_tensor() (in module MuyG-
PyS.gp.tensors), 10

MuyG-

module

MuyG-

MuyG-

make_loo_crossval_fn() (in module MuyG-
PyS.optimize.objective), 43
make_masks () (in module MuyG-

PyS.examples.two_class_classify_ugq), 62
make_multivariate_classifier() (in module

MuyGPyS.examples.classify), 57
make_multivariate_regressor() (in module MuyG-

PyS.examples.regress), 46

make_obj_fn() (MuyG-
PyS.optimize.chassis.OptimizeFn method),
35

make_predict_tensors() (MuyG-

PyS.gp.multivariate_muygps.MultivariateMuyGPS

method), 30
make_predict_tensors() (MuyG-
PyS.gp.muygps.MuyGPS method), 25
make_raw_predict_and_loss_fn() (in module
MuyGPyS.optimize.loss), 41
make_regressor() (in module MuyG-
PyS.examples.regress), 48
make_train_tensors() (MuyG-

PyS.gp.multivariate_muygps.Multivariate MuyGPS

method), 30
make_train_tensors() (MuyG-
PyS.gp.muygps.MuyGPS method), 26
make_var_predict_and_loss_fn() (in module

MuyGPyS.optimize.loss), 41
Matern (class in MuyGPyS.gp.kernels.matern), 15
MetricFn (class in MuyGPyS.gp.deformation.metric), 17
module
MuyGPyS.
MuyGPyS.
MuyGPyS.
MuyGPyS.
MuyGPyS.
59
MuyGPyS

examples.classify, 54

examples. fast_posterior_mean, 50
examples.muygps_torch, 63
examples.regress, 44
examples.two_class_classify_uq,

.gp.deformation.metric, 17

128

Index

MuyGPyS, Release beta

MuyGPyS
MuyGPyS
MuyGPyS

.gp.kernels.kernel_£n, 13
.gp.tensors, 8
.neighbors, 3
MuyGPyS.optimize.batch, 33
MuyGPyS.optimize.loss, 39
MuyGPyS.optimize.objective, 43
MuyGPyS. torch.muygps_layer, 68
mse_£n (in module MuyGPyS.optimize.loss), 42
MultivariateMuyGPS (class in
PyS.gp.multivariate_muygps), 28
MuyGPS (class in MuyGPyS.gp.muygps), 22
MuyGPs_layer (class in MuyGPyS.torch.muygps_layer),
68
MuyGPyS.examples.
module, 54
MuyGPyS . examples.
module, 50
MuyGPyS.examples
module, 63
MuyGPyS.examples
module, 44
MuyGPyS . examples.
module, 59
MuyGPyS.gp.deformation.metric
module, 17
MuyGPyS.gp.kernels.kernel_fn
module, 13
MuyGPyS.gp.tensors
module, 8
MuyGPyS.neighbors
module, 3
MuyGPyS.optimize.batch
module, 33
MuyGPyS.optimize.loss
module, 39
MuyGPyS.optimize.objective
module, 43
MuyGPyS.torch.muygps_layer
module, 68

MuyG-

classify
fast_posterior_mean
.muygps_torch
.regress

two_class_classify_uq

PyS.gp.deformation.metric.MetricFn method),
19

pairwise_distances() (MuyG-
PyS.gp.deformation.metric.MetricFn method),
19

pairwise_tensor() (MuyG-
PyS.gp.deformation.Anisotropy method),
8

pairwise_tensor() (MuyG-

PyS.gp.deformation.Isotropy method), 6
Parameter (class in

PyS.gp.hyperparameter.scalar), 10
perturb () (MuyGPyS.gp.noise.heteroscedastic. HeteroscedasticNoise

MuyG-

method), 21

perturb () (MuyGPyS.gp.noise.homoscedastic. HomoscedasticNoise
method), 20

perturb() (MuyGPyS.gp.noise.null. NullNoise method),
21

perturb_fn() (MuyG-
PyS.gp.noise.heteroscedastic. HeteroscedasticNoise
method), 22

perturb_fn() (MuyG-
PyS.gp.noise.homoscedastic.HomoscedasticNoise
method), 20

posterior_mean() (MuyG-
PyS.gp.multivariate_muygps.MultivariateMuyGPS
method), 31

posterior_mean() (MuyGPyS.gp.muygps.MuyGPS
method), 27

posterior_variance() (MuyG-
PyS.gp.multivariate_muygps.MultivariateMuyGPS
method), 32

posterior_variance() (MuyG-
PyS.gp.muygps.MuyGPS method), 277
predict_model() (in module MuyG-
PyS.examples.muygps_torch), 63
predict_multiple_model() (in module MuyG-
PyS.examples.muygps_torch), 64
predict_single_model () (in module MuyG-

PyS.examples.muygps_torch), 65

N pseudo_huber_£fn (in module MuyGPyS.optimize.loss),
NN_Wrapper (class in MuyGPyS.neighbors), 3 42
NullNoise (class in MuyGPyS.gp.noise.null), 21 R
O RBF (class in MuyGPyS.gp.kernels.rbf), 14
optimize_scale() (MuyG- regress_any() (in module MuyG-
PyS.gp.multivariate_muygps.MultivariateMuyGPS PyS.examples.regress), 49
method), 31
optimize_scale() (MuyGPyS.gp.muygps.MuyGPS S
method), 26 sample_balanced_batch() (in module MuyG-
OptimizeFn (class in MuyGPyS.optimize.chassis), 35 PyS.optimize.batch), 34

P

pairwise_differences() (MuyG-

sample_batch() (in module MuyGPyS.optimize.batch),
34

Index

129

MuyGPyS, Release beta

scale_fn() (MuyGPyS.gp.hyperparameter.scale.ScaleFn

method), 12

ScaleFn (class in MuyGPyS.gp.hyperparameter.scale),
12

set_params () MuyG-
PyS.gp.kernels.kernel_fn.KernelFn method),
14

T

TensorParam (class in MuyG-
PyS.gp.hyperparameter.tensor), 11

train_deep_kernel_muygps() (in module MuyG-
PyS.examples.muygps_torch), 65

train_two_class_interval() (in module MuyG-
PyS.examples.two_class_classify_uq), 63

trained (MuyGPyS.gp.hyperparameter.scale.ScaleFn
property), 12

U

update_nearest_neighbors() (in module MuyG-
PyS.examples.muygps_torch), 67

130

Index

	Citation
	neighbors
	gp
	deformation
	tensors
	hyperparameter
	kernels
	metric
	noise
	MuyGPS
	MultivariateMuyGPS

	optimize
	batch
	chassis
	loss
	objective

	examples
	regress
	fast_posterior_mean
	classify
	two-class classify with uq
	muygps_torch

	torch
	muygps_layer

	Univariate Regression Tutorial
	Sampling a Curve from a Conventional GP
	Constructing Nearest Neighbor Lookups
	Sampling Batches of Data
	Setting and Optimizing Hyperparameters
	Inference

	Illustrating MuyGPs Sparsification, Prediction, and Uncertainty Quantification
	Sampling a 2D Surface from a Conventional GP
	Nearest Neighbors Sparsification
	Comparing MuyGPs to Conventional GP Posteriors

	Deep Kernels with MuyGPs in PyTorch Tutorial
	Training a Deep Kernel MuyGPs Model

	Fast Posterior Mean Tutorial
	Benchmarking Fast Prediction
	Comparison with Conventional Prediction

	Anisotropic Metric Tutorial
	Sampling a 2D Surface from a Conventional GP
	Training an Anisotropic Model
	Inference
	Results comparison

	Loss Function Tutorial
	Variance-free Loss Functions
	Mean Squared Error (mse_fn)
	Cross Entropy Loss (cross_entropy_fn)
	Pseudo-Huber Loss (pseudo_huber_fn)
	Coincidence of pseudo-Huber and MSE for relatively small residuals

	Variance-Sensitive Loss Functions
	Leave-One-Out Loss (lool_fn)
	Leave-One-Out Pseudo-Huber (looph_fn)
	Comparison between lool and looph

	References

	Indices and tables
	Bibliography
	Python Module Index
	Index

