
MuyGPyS
Release 0.6.6

Benjamin W. Priest

Jul 18, 2023

PACKAGE DOCUMENTATION:

1 Citation 3
1.1 neighbors . 3
1.2 gp . 5
1.3 optimize . 19
1.4 examples . 30
1.5 torch . 54
1.6 Univariate Regression Tutorial . 56
1.7 Deep Kernels with MuyGPs in PyTorch Tutorial . 67
1.8 Fast Posterior Mean Tutorial . 74
1.9 References . 81

2 Indices and tables 83

Bibliography 85

Python Module Index 87

Index 89

i

ii

MuyGPyS, Release 0.6.6

MuyGPyS is toolkit for training approximate Gaussian Process (GP) models using the MuyGPs (Muyskens, Goumiri,
Priest, Schneider) algorithm.

PACKAGE DOCUMENTATION: 1

MuyGPyS, Release 0.6.6

2 PACKAGE DOCUMENTATION:

CHAPTER

ONE

CITATION

If you use MuyGPyS in a research paper, please reference our article:

@article{muygps2021,
title={MuyGPs: Scalable Gaussian Process Hyperparameter Estimation Using Local Cross-

→˓Validation},
author={Muyskens, Amanda and Priest, Benjamin W. and Goumiri, Im{\`e}ne and Schneider,␣

→˓Michael},
journal={arXiv preprint arXiv:2104.14581},
year={2021}

}

1.1 neighbors

KNN lookup management

MuyGPyS.neighbors.NN_Wrapper is an api for tasking several KNN libraries with the construction of lookup indexes
that empower fast training and inference. The wrapper constructor expects the training features, the number of nearest
neighbors, and a method string specifying which algorithm to use, as well as any additional kwargs used by the methods.
Currently supported implementations include exact KNN using sklearn (“exact”) and approximate KNN using hnsw
(“hnsw”).

class MuyGPyS.neighbors.NN_Wrapper(train, nn_count, nn_method='exact', **kwargs)
Nearest Neighbors lookup datastructure wrapper.

Wraps the logic driving nearest neighbor data structure training and querying. Currently supports sklearn.
neighbors.NearestNeighbors for exact computation and hnswlib.Index for approximate nearest neigh-
bors.

An example constructing exact and approximate KNN data lookups with k = 10.

Example

>>> from MuyGPyS.neighors import NN_Wrapper
>>> train_features = load_train_features()
>>> nn_count = 10
>>> exact_nbrs_lookup = NN_Wrapper(
... train_features, nn_count, nn_method="exact", algorithm="ball_tree"
...)
>>> approx_nbrs_lookup = NN_Wrapper(

(continues on next page)

3

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html
https://github.com/nmslib/hnswlib

MuyGPyS, Release 0.6.6

(continued from previous page)

... train_features, nn_count, nn_method="hnsw", space="l2", M=16

...)

Parameters

• train (ndarray) – The full training data of shape (train_count, feature_count) that
will construct the nearest neighbor query datastructure.

• nn_count (int) – The number of nearest neighbors to return in queries.

• nn_method (str) – Indicates which nearest neighbor algorithm should be used. Cur-
rently “exact” indicates sklearn.neighbors.NearestNeighbors, while “hnsw” indi-
cates hnswlib.Index (requires installing MuyGPyS with the “hnswlib” extras flag).

• kwargs – Additional kwargs used for lookup data structure construction. nn_method=
"exact" supports “radius”, “algorithm”, “leaf_size”, “metric”, “p”, “metric_params”, and
“n_jobs” kwargs. nn_method="hnsw" supports “space”, “ef_construction”, “M”, and “ran-
dom_seed” kwargs.

get_batch_nns(batch_indices)
Get the non-self nearest neighbors for indices into the training data.

Find the nearest neighbors and associated distances for each specified index into the training data.

Example

>>> from MuyGPyS.neighbors import NN_Wrapper
>>> from numpy.random import choice
>>> train_features = load_train_features()
>>> nn_count = 10
>>> nbrs_lookup = NN_Wrapper(
... train_features, nn_count, nn_method="exact", algorithm="ball_tree"
...)
>>> train_count, _ = train_features.shape
>>> batch_count = 50
>>> batch_indices = choice(train_count, batch_count, replace=False)
>>> nn_indices, nn_dists = nbrs_lookup.get_nns(batch_indices)

Parameters
batch_indices (ndarray) – Indices into the training data of shape (batch_count,).

Return type
Tuple[ndarray, ndarray]

Returns

• batch_nn_indices – Matrix of nearest neighbor indices of shape (batch_count,
nn_count). Each row lists the nearest neighbor indices (self excluded) of the correspond-
ing batch element.

• batch_nn_dists (numpy.ndarray(int), shape=(batch_count, nn_count)) – Matrix of dis-
tances of shape (batch_count, nn_count). Each row lists the distance to the batch
element of the corresponding element in batch_nn_indices.

4 Chapter 1. Citation

MuyGPyS, Release 0.6.6

get_nns(test)
Get the nearest neighbors for each row of test dataset.

Find the nearest neighbors and associated distances for each element of the given test dataset. Here we
assume that the test dataset is distinct from the train dataset used in the construction of the nearest neighbor
lookup data structure.

Example

>>> from MuyGPyS.neighbors import NN_Wrapper
>>> train_features = load_train_features()
>>> test_features = load_test_features()
>>> nn_count = 10
>>> nbrs_lookup = NN_Wrapper(
... train_features, nn_count, nn_method="exact", algorithm="ball_tree"
...)
>>> nn_indices, nn_dists = nbrs_lookup.get_nns(test_features)

Parameters
test (ndarray) – Testing data matrix of shape (test_count, feature_count).

Return type
Tuple[ndarray, ndarray]

Returns

• nn_indices – Matrix of nearest neighbor indices of shape (test_count, nn_count).
Each row lists the nearest neighbor indices of the corresponding test element.

• nn_dists – Matrix of distances of shape (test_count, nn_count). Each row lists the
distance to the test element of the corresponding element in nn_indices.

1.2 gp

MuyGPyS.gp module reference.

1.2.1 distortion

1.2.2 tensors

Tensor functions

Compute pairwise and crosswise difference tensors for the purposes of kernel construction.

See the following example computing the pairwise and crosswise differences between a batch of training data and their
nearest neighbors.

1.2. gp 5

MuyGPyS, Release 0.6.6

Example

>>> from MuyGPyS.neighbors import NN_Wrapper
>>> from MuyGPyS.optimize.batch import sample_batch
>>> from MuyGPyS.gp.tensors import crosswise_tensor, pairwise_tensor
>>> train_features = load_train_features()
>>> nn_count = 10
>>> nbrs_lookup = NN_Wrapper(
... train_features,
... nn_count,
... nn_method="exact",
... algorithm="ball_tree",
...)
>>> train_count, _ = train_features.shape
>>> batch_count = 50
>>> batch_indices, batch_nn_indices = sample_batch(
... nbrs_lookup, batch_count, train_count
...)
>>> pairwise_diffs = pairwise_tensor(
... train_features, batch_nn_inidices
...)
>>> crosswise_diffs = crosswise_tensor(
... train_features,
... train_features,
... batch_indices,
... batch_nn_indices,
...)
)

See also the following example computing the crosswise differences between a test dataset and their nearest neighors
in the training data.

Example

>>> from MuyGPyS.neighbors import NN_Wrapper
>>> from MuyGPyS.gp.tensors import crosswise_tensor, pairwise_tensor
>>> train_features = load_train_features()
>>> test_features = load_test_features()
>>> nn_count = 10
>>> nbrs_lookup = NN_Wrapper(
... train_features, nn_count, nn_method="exact", algorithm="ball_tree"
...)
>>> nn_indices, nn_diffs = nbrs_lookup.get_nns(test_features)
>>> test_count, _ = test_features.shape
>>> indices = np.arange(test_count)
>>> nn_indices, _ = nbrs_lookup.get_nns(test_features)
>>> pairwise_diffs = pairwise_tensor(
... train_features, nn_inidices
...)
>>> crosswise_diffs = crosswise_tensor(
... test_features,
... train_features,

(continues on next page)

6 Chapter 1. Citation

MuyGPyS, Release 0.6.6

(continued from previous page)

... indices,

... nn_indices,

...)

The helper functions MuyGPyS.gp.tensors.make_predict_tensors(), MuyGPyS.gp.tensors.
make_fast_predict_tensors(), and MuyGPyS.gp.tensors.make_train_tensors() wrap these difference
tensors and also return the nearest neighbors sets’ training targets and (in the latter case) the training targets of the
training batch. These functions are convenient as the difference and target tensors are usually needed together.

MuyGPyS.gp.tensors.batch_features_tensor(features, batch_indices)
Compute a tensor of feature vectors for each batch element.

Parameters

• features (ndarray) – The full floating point training or testing data matrix of shape
(train_count, feature_count) or (test_count, feature_count).

• batch_indices (ndarray) – A vector of integers of shape (batch_count,) identifying
the training batch of observations to be approximated.

Return type
ndarray

Returns
A tensor of shape (batch_count, feature_count) containing the feature vectors for each
batch element.

MuyGPyS.gp.tensors.crosswise_tensor(data, nn_data, data_indices, nn_indices)
Compute a matrix of differences between data and their nearest neighbors.

Takes full datasets of records of interest data and neighbor candidates nn_data and produces the differences
between each element of data indicated by data_indices and each of the nearest neighbors in nn_data as
indicated by the corresponding rows of nn_indices. data and nn_data can refer to the same dataset.

See the following example computing the crosswise differences between a batch of training data and their nearest
neighbors.

Parameters

• data (ndarray) – The data matrix of shape (data_count, feature_count) containing
batch elements.

• nn_data (ndarray) – The data matrix of shape (candidate_count, feature_count)
containing the universe of candidate neighbors for the batch elements. Might be the same as
data.

• indices – An integral vector of shape (batch_count,) containing the indices of the batch.

• nn_indices (ndarray) – An integral matrix of shape (batch_count, nn_count) listing the
nearest neighbor indices for the batch of data points.

Return type
ndarray

Returns
A tensor of shape (batch_count, nn_count, feature_count) whose last two dimensions
list the difference between each feature of each batch element element and its nearest neighbors.

1.2. gp 7

MuyGPyS, Release 0.6.6

MuyGPyS.gp.tensors.make_fast_predict_tensors(batch_nn_indices, train_features, train_targets)
Create the difference and target tensors for fast posterior mean inference.

Creates pairwise_diffs and batch_nn_targets tensors required by fast_posterior_mean().

Parameters

• batch_nn_indices (ndarray) – A matrix of integers of shape (batch_count,
nn_count) listing the nearest neighbor indices for all observations in the batch.

• train_features (ndarray) – The full floating point training data matrix of shape
(train_count, feature_count).

• train_targets (ndarray) – A matrix of shape (train_count, response_count)
whose rows are vector-valued responses for each training element.

Return type
Tuple[ndarray, ndarray]

Returns

• pairwise_diffs – A tensor of shape (batch_count, nn_count, nn_count,
feature_count) containing the (nn_count, nn_count, feature_count)-shaped
pairwise nearest neighbor difference tensors corresponding to each of the batch elements.

• batch_nn_targets – Tensor of floats of shape (batch_count, nn_count,
response_count) containing the expected response for each nearest neighbor of
each batch element.

MuyGPyS.gp.tensors.make_heteroscedastic_tensor(measurement_noise, batch_nn_indices)
Create the heteroscedastic noise tensor for nonuniform noise values.

Creates eps_tensor tensor required by heteroscedastic MuyGPs models.

Parameters

• measurement_noise (ndarray) – A matrix of floats of shape (batch_count,) providing
the noise corresponding to the response variable at each input value in the data.

• batch_nn_indices (ndarray) – A matrix of integers of shape (batch_count,
nn_count, nn_count) listing the measurement noise for the nearest neighbors for all ob-
servations in the batch.

Returns
A matrix of floats of shape (batch_count, nn_count) providing the noise corresponding to
the nearest neighbor responses for all observations in the batch.

Return type
eps_tensor

MuyGPyS.gp.tensors.make_noise_tensor(measurement_noise, nn_indices)
Create the heteroscedastic noise tensor for nonuniform noise values for prediction of test data. Can also be used
to produce the noise tensor needed during batched training.

Creates eps_tensor tensor required by heteroscedastic MuyGPs models.

Parameters

• test –

• measurement_noise (ndarray) – A matrix of floats of shape (train_count) providing
the noise corresponding to the response variable at each input value in the data.

• nn_indices (ndarray) – The indices of the nearest neighbors of the test points.

8 Chapter 1. Citation

MuyGPyS, Release 0.6.6

Returns
A matrix of floats of shape (test_count, nn_count) providing the noise corresponding to
the nearest neighbor responses for all observations in the test set.

Return type
eps_tensor

MuyGPyS.gp.tensors.make_predict_tensors(batch_indices, batch_nn_indices, test_features, train_features,
train_targets)

Create the difference and target tensors for prediction.

Creates the crosswise_diffs, pairwise_diffs and batch_nn_targets tensors required by
posterior_mean() and posterior_variance().

Parameters

• batch_indices (ndarray) – A vector of integers of shape (batch_count,) identifying
the training batch of observations to be approximated.

• batch_nn_indices (ndarray) – A matrix of integers of shape (batch_count,
nn_count) listing the nearest neighbor indices for all observations in the batch.

• test_features (Optional[ndarray]) – The full floating point testing data matrix of shape
(test_count, feature_count).

• train_features (ndarray) – The full floating point training data matrix of shape
(train_count, feature_count).

• train_targets (ndarray) – A matrix of shape (train_count, feature_count)
whose rows are vector-valued responses for each training element.

Return type
Tuple[ndarray, ndarray, ndarray]

Returns

• crosswise_diffs – A tensor of shape (batch_count, nn_count, feature_count)
whose last two dimensions list the difference between each feature of each batch element
element and its nearest neighbors.

• pairwise_diffs – A tensor of shape (batch_count, nn_count, nn_count,
feature_count) containing the (nn_count, nn_count, feature_count)-shaped
pairwise nearest neighbor difference tensors corresponding to each of the batch elements.

• batch_nn_targets – Tensor of floats of shape (batch_count, nn_count,
response_count) containing the expected response for each nearest neighbor of
each batch element.

MuyGPyS.gp.tensors.make_train_tensors(batch_indices, batch_nn_indices, train_features, train_targets)
Create the difference and target tensors needed for training.

Similar to make_predict_tensors() but returns the additional batch_targetsmatrix, which is only defined
for a batch of training data.

Parameters

• batch_indices (ndarray) – A vector of integers of shape (batch_count,) identifying
the training batch of observations to be approximated.

• batch_nn_indices (ndarray) – A matrix of integers of shape (batch_count,
nn_count) listing the nearest neighbor indices for all observations in the batch.

1.2. gp 9

MuyGPyS, Release 0.6.6

• train_features (ndarray) – The full floating point training data matrix of shape
(train_count, feature_count).

• train_targets (ndarray) – A matrix of shape (train_count, feature_count)
whose rows are vector-valued responses for each training element.

Return type
Tuple[ndarray, ndarray, ndarray, ndarray]

Returns

• crosswise_diffs – A tensor of shape (batch_count, nn_count, feature_count)
whose last two dimensions list the difference between each feature of each batch element
element and its nearest neighbors.

• pairwise_diffs – A tensor of shape (batch_count, nn_count, nn_count,
feature_count) containing the (nn_count, nn_count, feature_count)-shaped
pairwise nearest neighbor difference tensors corresponding to each of the batch elements.

• batch_targets – Matrix of floats of shape (batch_count, response_count) whose rows
give the expected response for each batch element.

• batch_nn_targets – Tensor of floats of shape (batch_count, nn_count,
response_count) containing the expected response for each nearest neighbor of
each batch element.

MuyGPyS.gp.tensors.pairwise_tensor(data, nn_indices)
Compute a tensor of pairwise differences among sets of nearest neighbors.

Takes a full dataset of records of interest data and produces the pairwise differences between the elements
indicated by each row of nn_indices.

Parameters

• data (ndarray) – The data matrix of shape (batch_count, feature_count) containing
batch elements.

• nn_indices (ndarray) – An integral matrix of shape (batch_count, nn_count) listing the
nearest neighbor indices for the batch of data points.

Return type
ndarray

Returns
A tensor of shape (batch_count, nn_count, nn_count, feature_count) containing the
(nn_count, nn_count, feature_count)-shaped pairwise nearest neighbor difference ten-
sors corresponding to each of the batch elements.

1.2.3 kernels

Hyperparameters and kernel functors

Defines kernel functors (inheriting KernelFn) that transform crosswise difference tensors into cross-covariance ma-
trices and pairwise difference matrices into covariance or kernel tensors.

See the following example to initialize an MuyGPyS.gp.kernels.Matern object. Other kernel functors are similar,
but require different hyperparameters.

10 Chapter 1. Citation

MuyGPyS, Release 0.6.6

Example

>>> from MuyGPyS.gp.kernels import Matern
>>> kern = Matern(
... nu=ScalarHyperparameter("log_sample", (0.1, 2.5)),
... metric=IsotropicDistortion(
... l2,
... length_scale=ScalarHyperparameter(1.0),
...),
...)

One uses a previously computed pairwise_diffs tensor (see MuyGPyS.gp.tensor.pairwise_tensor()) to compute
a kernel tensor whose second two dimensions contain square kernel matrices. Similarly, one uses a previously computed
crosswise_diffs matrix (see MuyGPyS.gp.tensor.crosswise_diffs()) to compute a cross-covariance matrix. See
the following example, which assumes that you have already constructed the difference numpy.ndarrays and the kernel
kern as shown above.

Example

>>> K = kern(pairwise_diffs)
>>> Kcross = kern(crosswise_diffs)

class MuyGPyS.gp.kernels.kernel_fn.KernelFn(metric)
Bases: object

A kernel functor.

Base class for kernel functors that include a hyperparameter Dict and a call mechanism.

Parameters
kwargs – Ignored (by this base class) keyword arguments.

__call__(diffs)
Call self as a function.

Return type
ndarray

get_opt_params()

Report lists of unfixed hyperparameter names, values, and bounds.

Return type
Tuple[List[str], List[float], List[Tuple[float, float]]]

Returns

names:
A list of unfixed hyperparameter names.

params:
A list of unfixed hyperparameter values.

bounds:
A list of unfixed hyperparameter bound tuples.

set_params(**kwargs)
Reset hyperparameters using hyperparameter dict(s).

1.2. gp 11

MuyGPyS, Release 0.6.6

Parameters
kwargs – Hyperparameter kwargs.

Return type
None

MuyGPyS.gp.kernels.rbf

alias of <module ‘MuyGPyS.gp.kernels.rbf’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/muygpys/envs/docs/lib/python3.8/site-
packages/MuyGPyS/gp/kernels/rbf.py’>

MuyGPyS.gp.kernels.matern

alias of <module ‘MuyGPyS.gp.kernels.matern’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/muygpys/envs/docs/lib/python3.8/site-
packages/MuyGPyS/gp/kernels/matern.py’>

1.2.4 MuyGPS

class MuyGPyS.gp.muygps.MuyGPS(kernel, eps=<MuyGPyS.gp.noise.homoscedastic.HomoscedasticNoise
object>, response_count=1)

Local Kriging Gaussian Process.

Performs approximate GP inference by locally approximating an observation’s response using its nearest neigh-
bors. Implements the MuyGPs algorithm as articulated in [muyskens2021muygps].

Kernels accept different hyperparameter dictionaries specifying hyperparameter settings. Keys can include val
and bounds. bounds must be either a len == 2 iterable container whose elements are scalars in increasing order,
or the string fixed. If bounds == fixed (the default behavior), the hyperparameter value will remain fixed during
optimization. val must be either a scalar (within the range of the upper and lower bounds if given) or the strings
“sample” or log_sample”, which will randomly sample a value within the range given by the bounds.

In addition to individual kernel hyperparamters, each MuyGPS object also possesses a homoscedastic 𝜀 noise pa-
rameter and a vector of 𝜎2 indicating the scale parameter associated with the posterior variance of each dimension
of the response.

𝜎2 is the only parameter assumed to be a training target by default, and is treated differently from all other
hyperparameters. All other training targets must be manually specified in k_kwargs.

Example

>>> from MuyGPyS.gp import MuyGPS
>>> k_kwargs = {
... "kern": "rbf",
... "metric": "F2",
... "eps": {"val": 1e-5},
... "nu": {"val": 0.38, "bounds": (0.1, 2.5)},
... "length_scale": {"val": 7.2},
... }
>>> muygps = MuyGPS(**k_kwarg)

MuyGPyS depends upon linear operations on specially-constructed tensors in order to efficiently estimate GP
realizations. One can use (see their documentation for details) MuyGPyS.gp.tensors.pairwise_tensor() to
construct pairwise difference tensors and MuyGPyS.gp.tensors.crosswise_tensor() to produce crosswise
diff tensors that MuyGPS can then use to construct kernel tensors and cross-covariance matrices, respectively.

We can easily realize kernel tensors using a MuyGPS object’s kernel functor once we have computed a pair-
wise_diffs tensor and a crosswise_diffs matrix.

12 Chapter 1. Citation

MuyGPyS, Release 0.6.6

Example

>>> K = muygps.kernel(pairwise_diffs)
>>> Kcross = muygps.kernel(crosswise_diffs)

Parameters

• kernel (Union[Matern, RBF]) – The kernel to be used.

• eps (Union[NullNoise, HomoscedasticNoise, HeteroscedasticNoise]) – A noise
model.

• response_count (int) – The number of response dimensions.

apply_new_noise(new_noise)
Updates the homo/heteroscedastic noise parameter(s) of a MuyGPs model. To be used when the MuyGPs
model has been trained and needs to be used for prediction, or if multiple batches are needed during training
of a heteroscedastic model.

Parameters
new_noise (Union[HeteroscedasticNoise, HomoscedasticNoise, NullNoise]) – If
homoscedastic, a float to update the nugget parameter. If heteroscedastic, a matrix of shape
(test_count, nn_count) containing the measurement noise corresponding to the nearest neigh-
bors of each test point.

Returns
A MuyGPs model with updated noise parameter(s).

fast_coefficients(K, train_nn_targets_fast)
Produces coefficient matrix for the fast posterior mean given in Equation (8) of [dunton2022fast].

To form each row of this matrix, we compute

C𝑁*(𝑖, :) = (𝐾𝜃(𝑋𝑁* , 𝑋𝑁*) + 𝜀𝐼𝑘)
−1𝑌 (𝑋𝑁*).

Here 𝑋𝑁* is the union of the nearest neighbor of the ith test point and the nn_count - 1 nearest neighbors
of this nearest neighbor, 𝐾𝜃 is the trained kernel functor specified by self.kernel, 𝜀𝐼𝑘 is a diagonal noise
matrix whose diagonal is the value of the self.eps hyperparameter, and 𝑌 (𝑋𝑁*) is the (train_count,) vector
of responses corresponding to the training features indexed by N^*.

Parameters

• K (ndarray) – The full pairwise kernel tensor of shape (train_count, nn_count, nn_count).

• train_nn_targets_fast (ndarray) – The nearest neighbor response of each training
points of shape (train_count, nn_count, response_count).

Return type
ndarray

Returns
A matrix of shape (train_count, nn_count) whose rows are the precomputed coefficients for
fast posterior mean inference.

fast_posterior_mean(Kcross, coeffs_tensor)
Performs fast posterior mean inference using provided cross-covariance and precomputed coefficient ma-
trix.

Assumes that cross-covariance matrix Kcross is already computed and given as an argument.

1.2. gp 13

MuyGPyS, Release 0.6.6

Returns the predicted response in the form of a posterior mean for each element of the batch of observations,
as computed in Equation (9) of [dunton2022fast]. For each test point z, we compute

̂︀𝑌 (z | 𝑋) = 𝐾𝜃(z, 𝑋𝑁*)C𝑁* .

Here 𝑋𝑁* is the union of the nearest neighbor of the queried test point z and the nearest neighbors of that
training point, 𝐾𝜃 is the kernel functor specified by self.kernel, and C𝑁* is the matrix of precomputed
coefficients given in Equation (8) of [dunton2022fast].

Parameters

• Kcross (ndarray) – A matrix of shape (batch_count, nn_count) containing the 1 x
nn_count -shaped cross-covariance vector corresponding to each of the batch elements.

• coeffs_tensor (ndarray) – A matrix of shape (batch_count, nn_count, response_count)
whose rows are given by precomputed coefficients.

Return type
ndarray

Returns
A matrix of shape (batch_count, response_count) whose rows are the predicted response for
each of the given indices.

fixed()

Checks whether all kernel and model parameters are fixed.

This is a convenience utility to determine whether optimization is required.

Return type
bool

Returns
Returns True if all parameters are fixed, and False otherwise.

get_opt_mean_fn()

Return a posterior mean function for use in optimization.

This function is designed for use with MuyGPyS.optimize.chassis.optimize_from_tensors() and
assumes that either eps will be passed via a keyword argument or not at all.

Return type
Callable

Returns
A function implementing the posterior mean, where eps is either fixed or takes updating val-
ues during optimization. The function expects keyword arguments corresponding to current
hyperparameter values for unfixed parameters.

get_opt_params()

Return lists of unfixed hyperparameter names, values, and bounds.

Return type
Tuple[List[str], ndarray, ndarray]

Returns

names:
A list of unfixed hyperparameter names.

params:
A list of unfixed hyperparameter values.

14 Chapter 1. Citation

MuyGPyS, Release 0.6.6

bounds:
A list of unfixed hyperparameter bound tuples.

get_opt_var_fn()

Return a posterior variance function for use in optimization.

This function is designed for use with MuyGPyS.optimize.chassis.optimize_from_tensors() and
assumes that either eps will be passed via a keyword argument or not at all.

Return type
Callable

Returns
A function implementing posterior variance, where eps is either fixed or takes updating val-
ues during optimization. The function expects keyword arguments corresponding to current
hyperparameter values for unfixed parameters.

posterior_mean(K, Kcross, batch_nn_targets)
Returns the posterior mean from the provided covariance, cross-covariance, and target tensors.

Computes parallelized local solves of systems of linear equations using the last two dimensions of K along
with Kcross and batch_nn_targets to predict responses in terms of the posterior mean. Assumes that kernel
tensor K and cross-covariance matrix Kcross are already computed and given as arguments.

Returns the predicted response in the form of a posterior mean for each element of the batch of observations,
as computed in Equation (3.4) of [muyskens2021muygps]. For each batch element x𝑖, we compute

̂︀𝑌𝑁𝑁 (x𝑖 | 𝑋𝑁𝑖
) = 𝐾𝜃(x𝑖, 𝑋𝑁𝑖

)(𝐾𝜃(𝑋𝑁𝑖
, 𝑋𝑁𝑖

) + 𝜀𝐼𝑘)
−1𝑌 (𝑋𝑁𝑖

).

Here 𝑋𝑁𝑖 is the set of nearest neighbors of x𝑖 in the training data, 𝐾𝜃 is the kernel functor specified by
self.kernel, 𝜀𝐼𝑘 is a diagonal homoscedastic noise matrix whose diagonal is the value of the self.eps hy-
perparameter, and 𝑌 (𝑋𝑁𝑖

) is the (nn_count, response_count) matrix of responses of the nearest neighbors
given by the second two dimensions of the batch_nn_targets argument.

Parameters

• K (ndarray) – A tensor of shape (batch_count, nn_count, nn_count) containing the
(nn_count, nn_count -shaped kernel matrices corresponding to each of the batch elements.

• Kcross (ndarray) – A matrix of shape (batch_count, nn_count) containing the 1 x
nn_count -shaped cross-covariance matrix corresponding to each of the batch elements.

• batch_nn_targets (ndarray) – A tensor of shape (batch_count, nn_count, re-
sponse_count) whose last dimension lists the vector-valued responses for the nearest neigh-
bors of each batch element.

Return type
ndarray

Returns
A matrix of shape (batch_count, response_count) whose rows are the predicted response for
each of the given indices.

posterior_variance(K, Kcross)
Returns the posterior mean from the provided covariance and cross-covariance tensors.

Return the local posterior variances of each prediction, corresponding to the diagonal elements of a covari-
ance matrix. For each batch element x𝑖, we compute

𝑉 𝑎𝑟(̂︀𝑌𝑁𝑁 (x𝑖 | 𝑋𝑁𝑖)) = 𝐾𝜃(x𝑖,x𝑖)−𝐾𝜃(x𝑖, 𝑋𝑁𝑖)(𝐾𝜃(𝑋𝑁𝑖 , 𝑋𝑁𝑖) + 𝜀𝐼𝑘)
−1𝐾𝜃(𝑋𝑁𝑖 ,x𝑖).

1.2. gp 15

MuyGPyS, Release 0.6.6

Parameters

• K (ndarray) – A tensor of shape (batch_count, nn_count, nn_count) containing the
(nn_count, nn_count -shaped kernel matrices corresponding to each of the batch elements.

• Kcross (ndarray) – A matrix of shape (batch_count, nn_count) containing the 1 x
nn_count -shaped cross-covariance matrix corresponding to each of the batch elements.

Return type
ndarray

Returns
A vector of shape (batch_count, response_count) consisting of the diagonal elements of the
posterior variance.

set_eps(**eps)
Reset 𝜀 value or bounds.

Uses existing value and bounds as defaults.

Parameters
eps – A hyperparameter dict.

Return type
None

1.2.5 MultivariateMuyGPS

class MuyGPyS.gp.multivariate_muygps.MultivariateMuyGPS(*model_args)
Multivariate Local Kriging Gaussian Process.

Performs approximate GP inference by locally approximating an observation’s response using its nearest neigh-
bors with a separate kernel allocated for each response dimension, implemented as individual MuyGPyS.gp.
muygps.MuyGPS objects.

This class is similar in interface to MuyGPyS.gp.muygps.MuyGPS, but requires a list of hyperparameter dicts at
initialization.

Example

>>> from MuyGPyS.gp import MultivariateMuyGPS as MMuyGPS
>>> k_kwargs1 = {
... "eps": {"val": 1e-5},
... "nu": {"val": 0.67, "bounds": (0.1, 2.5)},
... "length_scale": {"val": 7.2},
... }
>>> k_kwargs2 = {
... "eps": {"val": 1e-5},
... "nu": {"val": 0.38, "bounds": (0.1, 2.5)},
... "length_scale": {"val": 7.2},
... }
>>> k_args = [k_kwargs1, k_kwargs2]
>>> mmuygps = MMuyGPS("matern", *k_args)

We can realize kernel tensors for each of the models contained within a MultivariateMuyGPS object by iterating
over its models member. Once we have computed pairwise_diffs and crosswise_diffs tensors, it is
straightforward to perform each of these realizations.

16 Chapter 1. Citation

MuyGPyS, Release 0.6.6

Example

>>> for model in MuyGPyS.models:
>>> K = model.kernel(pairwise_diffs)
>>> Kcross = model.kernel(crosswise_diffs)
>>> # do something with K and Kcross...

Args

model_args:
Dictionaries defining each internal MuyGPyS.gp.muygps.MuyGPS instance.

apply_new_noise(new_noise)
Updates the heteroscedastic noise parameters of a MultivariateMuyGPs model.

Parameters
new_noise – A matrix of shape (test_count, nn_count, nn_count,
response_count) containing the measurement noise corresponding to the nearest
neighbors of each test point and each response.

Returns
A MultivariateMuyGPs model with updated heteroscedastic noise parameters.

fast_coefficients(pairwise_diffs_fast, train_nn_targets_fast)
Produces coefficient tensor for fast posterior mean inference given in Equation (8) of [dunton2022fast].

To form the tensor, we compute

C𝑁*(𝑖, :, 𝑗) = (𝐾𝜃𝑗
(𝑋𝑁* , 𝑋𝑁*) + 𝜀𝐼𝑘)

−1𝑌 (𝑋𝑁*).

Here 𝑋𝑁* is the union of the nearest neighbor of the ith test point and the nn_count - 1 nearest neigh-
bors of this nearest neighbor, 𝐾𝜃𝑗

is the trained kernel functor corresponding the jth response and spec-
ified by self.models, 𝜀𝐼𝑘 is a diagonal homoscedastic noise matrix whose diagonal is the value of the
self.eps hyperparameter, and 𝑌 (𝑋𝑁*) is the (train_count, response_count) matrix of responses
corresponding to the training features indexed by N^*.

Parameters

• pairwise_diffs – A tensor of shape (train_count, nn_count, nn_count,
feature_count) containing the (nn_count, nn_count, feature_count)-shaped
pairwise nearest neighbor difference tensors corresponding to each of the batch elements.

• batch_nn_targets – A tensor of shape (train_count, nn_count,
response_count) listing the vector-valued responses for the nearest neighbors of
each batch element.

Return type
ndarray

Returns
A tensor of shape (batch_count, nn_count, response_count) whose entries com-
prise the precomputed coefficients for fast posterior mean inference.

fast_posterior_mean(crosswise_diffs, coeffs_tensor)
Performs fast posterior mean inference using provided crosswise differences and precomputed coefficient
matrix.

1.2. gp 17

MuyGPyS, Release 0.6.6

Returns the predicted response in the form of a posterior mean for each element of the batch of observations,
as computed in Equation (9) of [dunton2022fast]. For each test point z, we compute

̂︀𝑌 (z | 𝑋) = 𝐾𝜃(z, 𝑋𝑁*)C𝑁* .

Here 𝑋𝑁* is the union of the nearest neighbor of the queried test point z and the nearest neighbors of that
training point, 𝐾𝜃 is the kernel functor specified by self.kernel, and C𝑁* is the matrix of precomputed
coefficients given in Equation (8) of [dunton2022fast].

Parameters

• crosswise_diffs (ndarray) – A matrix of shape (batch_count, nn_count,
feature_count) whose rows list the difference between each feature of each batch el-
ement element and its nearest neighbors.

• coeffs_tensor (ndarray) – A tensor of shape (batch_count, nn_count,
response_count) providing the precomputed coefficients.

Return type
ndarray

Returns
A matrix of shape (batch_count, response_count) whose rows are the predicted re-
sponse for each of the given indices.

fixed()

Checks whether all kernel and model parameters are fixed for each model, excluding 𝜎2.

Return type
bool

Returns
Returns True if all parameters in all models are fixed, and False otherwise.

posterior_mean(pairwise_diffs, crosswise_diffs, batch_nn_targets)
Performs simultaneous posterior mean inference on provided difference tensors and the target matrix.

Computes parallelized local solves of systems of linear equations using the kernel realizations, one for
each internal model, of the last two dimensions of pairwise_diffs along with crosswise_diffs and
batch_nn_targets to predict responses in terms of the posterior mean. Assumes that difference tensors
pairwise_diffs and crosswise_diffs are already computed and given as arguments.

Returns the predicted response in the form of a posterior mean for each element of the batch of observations
by solving a system of linear equations induced by each kernel functor, one per response dimension, in a
generalization of Equation (3.4) of [muyskens2021muygps]. For each batch element x𝑖 we compute

̂︀𝑌𝑁𝑁 (x𝑖 | 𝑋𝑁𝑖
):,𝑗 = 𝐾

(𝑗)
𝜃 (x𝑖, 𝑋𝑁𝑖

)(𝐾
(𝑗)
𝜃 (𝑋𝑁𝑖

, 𝑋𝑁𝑖
) + 𝜀𝑗𝐼𝑘)

−1𝑌 (𝑋𝑁𝑖
):,𝑗 .

Here 𝑋𝑁𝑖
is the set of nearest neighbors of x𝑖 in the training data, 𝐾(𝑗)

𝜃 is the kernel functor associ-
ated with the jth internal model, corresponding to the jth response dimension, 𝜀𝑗𝐼𝑘 is a diagonal ho-
moscedastic noise matrix whose diagonal is the value of the self.models[j].eps hyperparameter, and
𝑌 (𝑋𝑁𝑖

):,𝑗 is the (batch_count,) vector of the jth responses of the nearest neighbors given by a slice of
the batch_nn_targets argument.

Parameters

• pairwise_diffs (ndarray) – A tensor of shape (batch_count, nn_count,
nn_count, feature_count) containing the (nn_count, nn_count,
feature_count)-shaped pairwise nearest neighbor difference tensors correspond-
ing to each of the batch elements.

18 Chapter 1. Citation

MuyGPyS, Release 0.6.6

• crosswise_diffs (ndarray) – A matrix of shape (batch_count, nn_count,
feature_count) whose rows list the difference between each feature of each batch el-
ement element and its nearest neighbors.

• batch_nn_targets (ndarray) – A tensor of shape (batch_count, nn_count,
response_count) listing the vector-valued responses for the nearest neighbors of each
batch element.

Return type
ndarray

Returns
A matrix of shape (batch_count, response_count) whose rows are the predicted re-
sponse for each of the given indices.

posterior_variance(pairwise_diffs, crosswise_diffs)
Performs simultaneous posterior variance inference on provided difference tensors.

Return the local posterior variances of each prediction, corresponding to the diagonal elements of a covari-
ance matrix. For each batch element x𝑖, we compute

𝑉 𝑎𝑟(̂︀𝑌𝑁𝑁 (x𝑖 | 𝑋𝑁𝑖))𝑗 = 𝐾
(𝑗)
𝜃 (x𝑖,x𝑖)−𝐾

(𝑗)
𝜃 (x𝑖, 𝑋𝑁𝑖)(𝐾

(𝑗)
𝜃 (𝑋𝑁𝑖 , 𝑋𝑁𝑖) + 𝜀𝐼𝑘)

−1𝐾
(𝑗)
𝜃 (𝑋𝑁𝑖 ,x𝑖).

Parameters

• pairwise_diffs (ndarray) – A tensor of shape (batch_count, nn_count,
nn_count, feature_count) containing the (nn_count, nn_count,
feature_count)-shaped pairwise nearest neighbor difference tensors correspond-
ing to each of the batch elements.

• crosswise_diffs (ndarray) – A matrix of shape (batch_count, nn_count,
feature_count) whose rows list the difference between each feature of each batch el-
ement element and its nearest neighbors.

Return type
ndarray

Returns
A vector of shape (batch_count, response_count) consisting of the diagonal elements
of the posterior variance for each model.

1.3 optimize

MuyGPyS.optimize module reference.

1.3.1 batch

Sampling elements with their nearest neighbors from data

MuyGPyS includes convenience functions for sampling batches of data from existing datasets. These batches are
returned in the form of row indices, both of the sampled data as well as their nearest neighbors. Also included is the
ability to sample “balanced” batches, where the data is partitioned by class and we attempt to sample as close to an
equal number of items from each class as is possible.

1.3. optimize 19

MuyGPyS, Release 0.6.6

MuyGPyS.optimize.batch.full_filtered_batch(nbrs_lookup, labels)
Return a batch composed of the entire training set, filtering out elements with constant nearest neighbor sets.

Parameters

• nbrs_lookup (NN_Wrapper) – Trained nearest neighbor query data structure.

• labels (ndarray) – List of class labels of shape (train_count,) for all train data.

Return type
Tuple[ndarray, ndarray]

Returns

• indices – The indices of the sampled training points of shape (batch_count,).

• nn_indices – The indices of the nearest neighbors of the sampled training points of shape
(batch_count, nn_count).

MuyGPyS.optimize.batch.get_balanced_batch(nbrs_lookup, labels, batch_count)
Decide whether to sample a balanced batch or return the full filtered batch.

This method is the go-to method for sampling from classification datasets when one desires a sam-
ple with equal representation of every class. The function simply calls MuyGPyS.optimize.batch.
full_filtered_batch() if the supplied list of training data class labels is smaller than the batch count, oth-
erwise calling MuyGPyS.optimize.batch_sample_balanced_batch().

Example

>>> import numpy as np
>>> From MuyGPyS.optimize.batch import get_balanced_batch
>>> train_features, train_responses = get_train()
>>> nn_count = 10
>>> nbrs_lookup = NN_Wrapper(train_features, nn_count)
>>> batch_count = 200
>>> train_labels = np.argmax(train_responses, axis=1)
>>> balanced_indices, balanced_nn_indices = get_balanced_batch(
... nbrs_lookup, train_labels, batch_count
>>>)

Parameters

• nbrs_lookup (NN_Wrapper) – Trained nearest neighbor query data structure.

• labels (ndarray) – List of class labels of shape (train_count,) for all training data.

• batch_count (int) – int The number of batch elements to sample.

Return type
Tuple[ndarray, ndarray]

Returns

• indices – The indices of the sampled training points of shape (batch_count,).

• nn_indices – The indices of the nearest neighbors of the sampled training points of shape
(batch_count, nn_count).

20 Chapter 1. Citation

MuyGPyS, Release 0.6.6

MuyGPyS.optimize.batch.sample_balanced_batch(nbrs_lookup, labels, batch_count)
Collect a class-balanced batch of training indices.

The returned batch is filtered to remove samples whose nearest neighbors share the same class label, and is
balanced so that each class is equally represented (where possible.)

Parameters

• nbrs_lookup (NN_Wrapper) – Trained nearest neighbor query data structure.

• labels (ndarray) – List of class labels of shape (train_count,) for all train data.

• batch_count (int) – The number of batch elements to sample.

Return type
Tuple[ndarray, ndarray]

Returns

• nonconstant_balanced_indices – The indices of the sampled training points of shape
(batch_count,). These indices are guaranteed to have nearest neighbors with differing
class labels.

• batch_nn_indices – The indices of the nearest neighbors of the sampled training points of
shape (batch_count, nn_count).

MuyGPyS.optimize.batch.sample_batch(nbrs_lookup, batch_count, train_count)
Collect a batch of training indices.

This is a simple sampling method where training examples are selected uniformly at random, without replace-
ment.

Example

>>> From MuyGPyS.optimize.batch import sample_batch
>>> train_features, train_responses = get_train()
>>> train_count, _ = train_features.shape
>>> nn_count = 10
>>> nbrs_lookup = NN_Wrapper(train_features, nn_count)
>>> batch_count = 200
>>> batch_indices, batch_nn_indices = sample_batch(
... nbrs_lookup, batch_count, train_count
>>>)

Parameters

• nbrs_lookup (NN_Wrapper) – Trained nearest neighbor query data structure.

• batch_count (int) – The number of batch elements to sample.

• train_count (int) – int The total number of training examples.

Return type
Tuple[ndarray, ndarray]

Returns

• batch_indices – The indices of the sampled training points of shape (batch_count,).

• batch_nn_indices – The indices of the nearest neighbors of the sampled training points of
shape (batch_count, nn_count).

1.3. optimize 21

MuyGPyS, Release 0.6.6

1.3.2 chassis

Convenience functions for optimizing MuyGPS objects

The functions optimize_from_indices() and optimize_from_tensors() wrap different optimization packages
to provide a simple interface to optimize the hyperparameters of MuyGPS objects.

Currently, opt_method="scipy" wraps scipy.optimize.opt multiparameter optimization using L-BFGS-B algo-
rithm using the objective function MuyGPyS.optimize.objective.loo_crossval().

Currently, opt_method="bayesian" (also accepts "bayes" and "bayes_opt") wraps bayes_opt.
BayesianOptimization. Unlike the scipy version, BayesianOptimization can be meaningfully modified
by several kwargs. MuyGPyS assigns reasonable defaults if no settings are passed by the user. See the BayesianOpti-
mization documentation for details.

MuyGPyS.optimize.chassis.optimize_from_tensors(muygps, batch_targets, batch_nn_targets,
crosswise_diffs, pairwise_diffs, batch_features=None,
loss_method='mse', obj_method='loo_crossval',
opt_method='bayes', sigma_method='analytic',
loss_kwargs={}, verbose=False, **kwargs)

Find the optimal model using existing difference matrices.

See the following example, where we have already created a batch_indices vector and a batch_nn_indices
matrix using MuyGPyS.neighbors.NN_Wrapper, a crosswise_diffs matrix using MuyGPyS.gp.tensors.
crosswise_tensor() and pairwise_diffs using MuyGPyS.gp.tensors.pairwise_tensor(), and ini-
tialized a MuyGPS model muygps.

Example

>>> from MuyGPyS.optimize.chassis import optimize_from_tensors
>>> muygps = optimize_from_tensors(
... muygps,
... batch_indices,
... batch_nn_indices,
... crosswise_diffs,
... pairwise_diffs,
... train_responses,
... loss_method='mse',
... obj_method='loo_crossval',
... opt_method='scipy',
... verbose=True,
...)
parameters to be optimized: ['nu']
bounds: [[0.1 1.]]
sampled x0: [0.8858425]
optimizer results:

fun: 0.4797763813693626
hess_inv: <1x1 LbfgsInvHessProduct with dtype=float64>

jac: array([-3.06976666e-06])
message: b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'

nfev: 16
nit: 5

njev: 8
status: 0

(continues on next page)

22 Chapter 1. Citation

https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization

MuyGPyS, Release 0.6.6

(continued from previous page)

success: True
x: array([0.39963594])

Parameters

• muygps (MuyGPS) – The model to be optimized.

• batch_targets (ndarray) – Matrix of floats of shape (batch_count,
response_count) whose rows give the expected response for each batch element.

• batch_nn_targets (ndarray) – Tensor of floats of shape (batch_count, nn_count,
response_count) containing the expected response for each nearest neighbor of each batch
element.

• crosswise_diffs (ndarray) – A tensor of shape (batch_count, nn_count,
feature_count) whose last two dimensions list the difference between each feature of
each batch element element and its nearest neighbors.

• pairwise_diffs (ndarray) – A tensor of shape (batch_count, nn_count,
nn_count, feature_count) containing the (nn_count, nn_count,
feature_count)-shaped pairwise nearest neighbor difference tensors corresponding
to each of the batch elements.

• loss_method (str) – Indicates the loss function to be used.

• obj_method (str) – Indicates the objective function to be minimized. Currently restricted
to "loo_crossval".

• opt_method (str) – Indicates the optimization method to be used. Currently restricted to
"bayesian" (alternately "bayes" or "bayes_opt") and "scipy".

• sigma_method (Optional[str]) – The optimization method to be employed to learn the
sigma_sq hyperparameter.

• loss_kwargs (Dict) – A dictionary of additional keyword arguments to apply to the loss
function. Loss function specific.

• verbose (bool) – If True, print debug messages.

• kwargs – Additional keyword arguments to be passed to the wrapper optimizer.

Return type
MuyGPS

Returns
A new MuyGPs model whose specified hyperparameters have been optimized.

1.3.3 loss

Loss Function Handling

MuyGPyS includes predefined loss functions and convenience functions for indicating them to optimization.

MuyGPyS.optimize.loss.cross_entropy_fn(predictions, targets)
Cross entropy function.

Computes the cross entropy loss the predicted versus known response. Transforms predictions to be row-
stochastic, and ensures that targets contains no negative elements.

@NOTE[bwp] I don’t remember why we hard-coded eps=1e-6. Might need to revisit.

1.3. optimize 23

MuyGPyS, Release 0.6.6

Parameters

• predictions (ndarray) – The predicted response of shape (batch_count,
response_count).

• targets (ndarray) – The expected response of shape (batch_count,
response_count).

Return type
float

Returns
The cross-entropy loss of the prediction.

MuyGPyS.optimize.loss.get_loss_func(loss_method)
Select a loss function based upon string key.

Currently supports strings "log" or "cross-entropy" for MuyGPyS.optimize.objective.
cross_entropy_fn() and "mse" for MuyGPyS.optimize.objective.mse_fn().

Parameters

• predictions – The predicted response of shape (batch_count, response_count).

• targets – The expected response of shape (batch_count, response_count).

Return type
Callable

Returns
The loss function Callable.

Raises
NotImplementedError – Unrecognized strings will result in an error.

MuyGPyS.optimize.loss.lool_fn(predictions, targets, variances, sigma_sq)
Leave-one-out likelihood function.

Computes leave-one-out likelihood (LOOL) loss of the predicted versus known response. Treats multivariate
outputs as interchangeable in terms of loss penalty. The function computes

𝑙(𝑓(𝑥), 𝑦 | 𝜎) =
𝑏∑︁

𝑖=1

𝑠∑︁
𝑗=1

(𝑓(𝑥𝑖)− 𝑦)2

𝜎𝑗
+ log 𝜎𝑗

Parameters

• predictions (ndarray) – The predicted response of shape (batch_count,
response_count).

• targets (ndarray) – The expected response of shape (batch_count,
response_count).

• variances (ndarray) – The unscaled variance of the predicted responses of shape
(batch_count, response_count).

• sigma_sq (ndarray) – The sigma_sq variance scaling parameter of shape
(response_count,).

Return type
float

Returns
The LOOL loss of the prediction.

24 Chapter 1. Citation

MuyGPyS, Release 0.6.6

MuyGPyS.optimize.loss.lool_fn_unscaled(predictions, targets, variances)
Leave-one-out likelihood function.

Computes leave-one-out likelihood (LOOL) loss of the predicted versus known response. Treats multivariate
outputs as interchangeable in terms of loss penalty. Unlike lool_fn, does not require sigma_sq as an argument.
The function computes

𝑙(𝑓(𝑥), 𝑦 | 𝜎) =
𝑏∑︁

𝑖=1

(𝑓(𝑥𝑖)− 𝑦)2

𝜎
+ log 𝜎

Parameters

• predictions (ndarray) – The predicted response of shape (batch_count,
response_count).

• targets (ndarray) – The expected response of shape (batch_count,
response_count).

• variances (ndarray) – The unscaled variance of the predicted responses of shape
(batch_count, response_count).

Return type
float

Returns
The LOOL loss of the prediction.

MuyGPyS.optimize.loss.looph_fn(predictions, targets, variances, sigma_sq, boundary_scale=1.5)
Variance-regularized pseudo-Huber loss function.

Computes a smooth approximation to the Huber loss function, similar to pseudo_huber_fn(), with the addition
of both a variance scaling and a additive logarithmic variance regularization term to avoid exploding the variance.
The function computes

𝑙(𝑓(𝑥), 𝑦 | 𝛿) = 𝛿2
𝑏∑︁

𝑖=1

⎛⎝√︃(︂
1 +

𝑦𝑖 − 𝑓(𝑥𝑖)

𝜎𝑖𝛿

)︂2

− 1

⎞⎠+ log 𝜎𝑖

Parameters

• predictions (ndarray) – The predicted response of shape (batch_count,
response_count).

• targets (ndarray) – The expected response of shape (batch_count,
response_count).

• variances (ndarray) – The unscaled variance of the predicted responses of shape
(batch_count, response_count).

• sigma_sq (ndarray) – The sigma_sq variance scaling parameter of shape
(response_count,).

• boundary_scale (float) – The boundary value for the residual beyond which the loss
becomes approximately linear. Useful values depend on the scale of the response.

Return type
float

Returns
The sum of pseudo-Huber losses of the predictions.

1.3. optimize 25

MuyGPyS, Release 0.6.6

MuyGPyS.optimize.loss.mse_fn(predictions, targets)
Mean squared error function.

Computes mean squared error loss of the predicted versus known response. Treats multivariate outputs as inter-
changeable in terms of loss penalty. The function computes

Parameters

• predictions (ndarray) – The predicted response of shape (batch_count,
response_count).

• targets (ndarray) – The expected response of shape (batch_count, response_count).

Return type
float

Returns
The mse loss of the prediction.

MuyGPyS.optimize.loss.pseudo_huber_fn(predictions, targets, boundary_scale=1.5)
Pseudo-Huber loss function.

Computes a smooth approximation to the Huber loss function, which balances sensitive squared-error loss for
relatively small errors and robust-to-outliers absolute loss for larger errors, so that the loss is not overly sensi-
tive to outliers. Used the form from [wikipedia](https://en.wikipedia.org/wiki/Huber_loss#Pseudo-Huber_loss_
function). The function computes

𝑙(𝑓(𝑥), 𝑦 | 𝛿) = 𝛿2
𝑏∑︁

𝑖=1

⎛⎝√︃(︂
1 +

𝑦𝑖 − 𝑓(𝑥𝑖)

𝛿

)︂2

− 1

⎞⎠
Parameters

• predictions (ndarray) – The predicted response of shape (batch_count,
response_count).

• targets (ndarray) – The expected response of shape (batch_count,
response_count).

• boundary_scale (float) – The boundary value for the residual beyond which the loss
becomes approximately linear. Useful values depend on the scale of the response.

Return type
float

Returns
The sum of pseudo-Huber losses of the predictions.

26 Chapter 1. Citation

https://en.wikipedia.org/wiki/Huber_loss#Pseudo-Huber_loss_function
https://en.wikipedia.org/wiki/Huber_loss#Pseudo-Huber_loss_function

MuyGPyS, Release 0.6.6

1.3.4 objective

Objective Handling

MuyGPyS includes predefined objective functions and convenience functions for indicating them to optimization.

MuyGPyS.optimize.objective.make_loo_crossval_fn(loss_method, loss_fn, kernel_fn, mean_fn, var_fn,
sigma_sq_fn, pairwise_diffs, crosswise_diffs,
batch_nn_targets, batch_targets,
batch_features=None, loss_kwargs={})

Prepare a leave-one-out cross validation function as a function purely of the hyperparameters to be optimized.

This function is designed for use with MuyGPyS.optimize.chassis.optimize_from_tensors(), and the
format depends on the opt_method argument.

Parameters

• loss_method (str) – Indicates the loss function to be used.

• kernel_fn (Callable) – A function that realizes kernel tensors given a list of the free
parameters.

• mean_fn (Callable) – A function that realizes MuyGPs posterior mean prediction given
an epsilon value. The given value is unused if epsilon is fixed.

• var_fn (Callable) – A function that realizes MuyGPs posterior variance prediction given
an epsilon value. The given value is unused if epsilon is fixed.

• sigma_sq_fn (Callable) – A function that realizes sigma_sq optimization given an ep-
silon value. The given value is unused if epsilon is fixed.

• pairwise_diffs (ndarray) – A tensor of shape (batch_count, nn_count,
nn_count, feature_count) containing the (nn_count, nn_count,
feature_count)-shaped pairwise nearest neighbor difference tensors corresponding
to each of the batch elements.

• crosswise_diffs (ndarray) – A tensor of shape (batch_count, nn_count,
feature_count) whose last two dimensions list the difference between each feature of
each batch element element and its nearest neighbors.

• batch_nn_targets (ndarray) – Tensor of floats of shape (batch_count, nn_count,
response_count) containing the expected response for each nearest neighbor of each batch
element.

• batch_targets (ndarray) – Matrix of floats of shape (batch_count,
response_count) whose rows give the expected response for each batch element.

• batch_features (Optional[ndarray]) – Matrix of floats of shape (batch_count,
feature_count) whose rows give the features for each batch element.

• loss_kwargs (Dict) – A dict listing any additional kwargs to pass to the loss function.

Return type
Callable

Returns
A Callable objective_fn, whose format depends on opt_method.

MuyGPyS.optimize.objective.make_obj_fn(obj_method, loss_method, *args, **kwargs)
Prepare an objective function as a function purely of the hyperparameters to be optimized.

This function is designed for use with MuyGPyS.optimize.chassis.optimize_from_tensors(), and the
format depends on the opt_method argument.

1.3. optimize 27

MuyGPyS, Release 0.6.6

Parameters

• obj_method (str) – The name of the objective function to be minimized.

• opt_method – The name of the optimization method to be utilized.

• loss_method (str) – Indicates the loss function to be used.

Return type
Callable

Returns
A Callable objective_fn, whose format depends on opt_method.

1.3.5 sigma_sq

Convenience functions for optimizing the sigma_sq parameter of MuyGPS objects.

Currently only supports an analytic approximation, but will support other methods in the future.

MuyGPyS.optimize.sigma_sq.mmuygps_analytic_sigma_sq_optim(mmuygps, pairwise_diffs, nn_targets)
Optimize the value of the 𝜎2 scale parameter for each response dimension.

We approximate 𝜎2 by way of averaging over the analytic solution from each local kernel.

𝜎2 =
1

𝑏𝑘
*
∑︁
𝑖∈𝐵

𝑌 𝑇
𝑛𝑛𝑖

𝐾−1
𝑛𝑛𝑖

𝑌𝑛𝑛𝑖

Here 𝑌𝑛𝑛𝑖
and 𝐾𝑛𝑛𝑖

are the target and kernel matrices with respect to the nearest neighbor set in scope, where
𝑘 is the number of nearest neighbors and 𝑏 = |𝐵| is the number of batch elements considered.

Parameters

• muygps – The model to be optimized.

• pairwise_diffs (ndarray) – A tensor of shape (batch_count, nn_count,
nn_count, feature_count) containing the (nn_count, nn_count,
feature_count)-shaped pairwise nearest neighbor difference tensors corresponding
to each of the batch elements.

• nn_targets (ndarray) – Tensor of floats of shape (batch_count, nn_count,
response_count) containing the expected response for each nearest neighbor of each batch
element.

Return type
MultivariateMuyGPS

Returns
A new MuyGPs model whose sigma_sq parameter has been optimized.

MuyGPyS.optimize.sigma_sq.mmuygps_sigma_sq_optim(mmuygps, pairwise_diffs, nn_targets,
sigma_method='analytic')

Optimize the value of the 𝜎2 scale parameter for each response dimension of a MultivariateMuyGPS object.

The optimization to be applied depends upon the value of sigma_method.

Parameters

• mmuygps (MultivariateMuyGPS) – The model to be optimized.

28 Chapter 1. Citation

MuyGPyS, Release 0.6.6

• pairwise_diffs (ndarray) – A tensor of shape (batch_count, nn_count,
nn_count, feature_count) containing the (nn_count, nn_count,
feature_count)-shaped pairwise nearest neighbor difference tensors corresponding
to each of the batch elements.

• nn_targets (ndarray) – Tensor of floats of shape (batch_count, nn_count,
response_count) containing the expected response for each nearest neighbor of each batch
element.

• sigma_method (Optional[str]) – The optimization method to apply. Currently only sup-
ports "analytic" and None.

Return type
MultivariateMuyGPS

Returns
A new MultivariateMuyGPs model whose sigma_sq parameter has been optimized.

MuyGPyS.optimize.sigma_sq.muygps_analytic_sigma_sq_optim(muygps, pairwise_diffs, nn_targets)
Optimize the value of the 𝜎2 scale parameter for each response dimension.

We approximate 𝜎2 by way of averaging over the analytic solution from each local kernel.

𝜎2 =
1

𝑏𝑘
*
∑︁
𝑖∈𝐵

𝑌 𝑇
𝑛𝑛𝑖

𝐾−1
𝑛𝑛𝑖

𝑌𝑛𝑛𝑖

Here 𝑌𝑛𝑛𝑖
and 𝐾𝑛𝑛𝑖

are the target and kernel matrices with respect to the nearest neighbor set in scope, where
𝑘 is the number of nearest neighbors and 𝑏 = |𝐵| is the number of batch elements considered.

Parameters

• muygps (MuyGPS) – The model to be optimized.

• pairwise_diffs (ndarray) – A tensor of shape (batch_count, nn_count,
nn_count, feature_count) containing the (nn_count, nn_count,
feature_count)-shaped pairwise nearest neighbor difference tensors corresponding
to each of the batch elements.

• nn_targets (ndarray) – Tensor of floats of shape (batch_count, nn_count,
response_count) containing the expected response for each nearest neighbor of each batch
element.

Return type
MuyGPS

Returns
A new MuyGPs model whose sigma_sq parameter has been optimized.

MuyGPyS.optimize.sigma_sq.muygps_sigma_sq_optim(muygps, pairwise_diffs, nn_targets,
sigma_method='analytic')

Optimize the value of the 𝜎2 scale parameter for each response dimension.

The optimization to be applied depends upon the value of sigma_method.

Parameters

• muygps (MuyGPS) – The model to be optimized.

• pairwise_diffs (ndarray) – A tensor of shape (batch_count, nn_count,
nn_count, feature_count) containing the (nn_count, nn_count,
feature_count)-shaped pairwise nearest neighbor difference tensors corresponding
to each of the batch elements.

1.3. optimize 29

MuyGPyS, Release 0.6.6

• nn_targets (ndarray) – Tensor of floats of shape (batch_count, nn_count,
response_count) containing the expected response for each nearest neighbor of each batch
element.

• sigma_method (Optional[str]) – The optimization method to apply. Currently only sup-
ports "analytic" and None.

Return type
MuyGPS

Returns
A new MuyGPs model whose sigma_sq parameter has been optimized.

1.4 examples

MuyGPyS.examples module reference. Includes the high-level APIs for automated model creation and training, and
some automated prediction workflows.

1.4.1 regress

Resources and high-level API for a simple regression workflow.

make_regressor() is a high-level API for creating and training MuyGPyS.gp.muygps.MuyGPS objects for regres-
sion. make_multivariate_regressor() is a high-level API for creating and training MuyGPyS.gp.muygps.
MultivariateMuyGPS objects for regression.

do_regress() is a high-level api for executing a simple, generic regression workflow given data. It calls the maker
APIs above and regress_any().

MuyGPyS.examples.regress.do_regress(test_features, train_features, train_targets, nn_count=30,
batch_count=200, loss_method='mse', obj_method='loo_crossval',
opt_method='bayes', sigma_method='analytic', k_kwargs={},
nn_kwargs={}, opt_kwargs={}, verbose=False)

Convenience function initializing a model and performing regression.

Expected parameters include keyword argument dicts specifying kernel parameters and nearest neighbor param-
eters. See the docstrings of the appropriate functions for specifics.

Also supports workflows relying upon multivariate models. In order to create a multivariate model, pass a list of
hyperparameter dicts to k_kwargs.

Example

>>> from MuyGPyS.testing.test_utils import _make_gaussian_data
>>> from MuyGPyS.examples.regress import do_regress
>>> from MuyGPyS.optimize.objective import mse_fn
>>> train, test = _make_gaussian_data(10000, 1000, 100, 10)
>>> nn_kwargs = {"nn_method": "exact", "algorithm": "ball_tree"}
>>> k_kwargs = {
... "kern": "rbf",
... "metric": "F2",
... "eps": {"val": 1e-5},
... "length_scale": {"val": 1.0, "bounds": (1e-2, 1e2)}

(continues on next page)

30 Chapter 1. Citation

MuyGPyS, Release 0.6.6

(continued from previous page)

... }
>>> muygps, nbrs_lookup, predictions, variance = do_regress(
... test['input'],
... train['input'],
... train['output'],
... nn_count=30,
... batch_count=200,
... loss_method="mse",
... obj_method="loo_crossval",
... opt_method="bayes",
... k_kwargs=k_kwargs,
... nn_kwargs=nn_kwargs,
... verbose=False,
...)
>>> muygps, nbrs_lookup, predictions, variance = do_regress(
... test['input'],
... train['input'],
... train['output'],
... nn_count=30,
... batch_count=200,
... loss_method="mse",
... obj_method="loo_crossval",
... opt_method="bayes",
... k_kwargs=k_kwargs,
... nn_kwargs=nn_kwargs,
... verbose=False,
...)
>>> mse = mse_fn(test['output'], predictions)
>>> print(f"obtained mse: {mse}")
obtained mse: 0.20842...

Parameters

• test_features (ndarray) – A matrix of shape (test_count, feature_count) whose
rows consist of observation vectors of the test data.

• train_features (ndarray) – A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

• train_targets (ndarray) – A matrix of shape (train_count, response_count)
whose rows consist of response vectors of the train data.

• nn_count (int) – The number of nearest neighbors to employ.

• batch_count (int) – The number of elements to sample batch for hyperparameter opti-
mization.

• loss_method (str) – The loss method to use in hyperparameter optimization. Ignored if
all of the parameters specified by argument k_kwargs are fixed. Currently supports only
"mse" for regression.

• obj_method (str) – Indicates the objective function to be minimized. Currently restricted
to "loo_crossval".

• opt_method (str) – Indicates the optimization method to be used. Currently restricted to
"bayesian" and "scipy".

1.4. examples 31

MuyGPyS, Release 0.6.6

• sigma_method (Optional[str]) – The optimization method to be employed to learn the
sigma_sq hyperparameter. Currently supports only "analytic" and None. If the value
is not None, the returned MuyGPyS.gp.muygps.MuyGPS object will possess a sigma_sq
member whose value, invoked via muygps.sigma_sq(), is a (response_count,) vector
to be used for scaling posterior variances.

• k_kwargs (Union[Dict, List[Dict], Tuple[Dict, ...]]) – If given a list or tu-
ple of length response_count, assume that the elements are dicts containing ker-
nel initialization keyword arguments for the creation of a multivariate model (see
make_multivariate_regressor()). If given a dict, assume that the elements are key-
word arguments to a MuyGPs model (see make_regressor()).

• nn_kwargs (Dict) – Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

• opt_kwargs (Dict) – Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

• verbose (bool) – If True, print summary statistics.

Return type
Tuple[Union[MuyGPS, MultivariateMuyGPS], NN_Wrapper, ndarray, ndarray]

Returns

• muygps – A (possibly trained) MuyGPs object.

• nbrs_lookup – A data structure supporting nearest neighbor queries into train_features.

• predictions – The predicted response associated with each test observation.

• variance – Estimated (test_count, response_count) posterior variance of each test
prediction.

MuyGPyS.examples.regress.make_multivariate_regressor(train_features, train_targets, nn_count=30,
batch_count=200, loss_method='mse',
obj_method='loo_crossval',
opt_method='bayes', sigma_method='analytic',
k_args=[], nn_kwargs={}, opt_kwargs={},
verbose=False)

Convenience function for creating a Multivariate MuyGPyS functor and neighbor lookup data structure.

Expected parameters include a list of keyword argument dicts specifying kernel parameters and a dict listing
nearest neighbor parameters. See the docstrings of the appropriate functions for specifics.

Example

>>> from MuyGPyS.testing.test_utils import _make_gaussian_data
>>> from MuyGPyS.examples.regress import make_regressor
>>> train_features, train_responses = make_train() # stand-in function
>>> nn_kwargs = {"nn_method": "exact", "algorithm": "ball_tree"}
>>> k_args = [
... {
... "length_scale": {"val": 1.0, "bounds": (1e-2, 1e2)}
... "eps": {"val": 1e-5},
... },
... {

(continues on next page)

32 Chapter 1. Citation

MuyGPyS, Release 0.6.6

(continued from previous page)

... "length_scale": {"val": 1.5, "bounds": (1e-2, 1e2)}

... "eps": {"val": 1e-5},

... },

...]
>>> mmuygps, nbrs_lookup = make_multivariate_regressor(
... train_features,
... train_responses,
... nn_count=30,
... batch_count=200,
... loss_method="mse",
... obj_method="loo_crossval",
... opt_method="bayes",
... sigma_method="analytic",
... k_args=k_args,
... nn_kwargs=nn_kwargs,
... verbose=False,
...)
>>> mmuygps, nbrs_lookup = make_multivariate_regressor(
... train_features,
... train_responses,
... nn_count=30,
... batch_count=200,
... loss_method="mse",
... obj_method="loo_crossval",
... opt_method="bayes",
... sigma_method="analytic",
... k_args=k_args,
... nn_kwargs=nn_kwargs,
... verbose=False,
...)

Parameters

• train_features (ndarray) – A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

• train_targets (ndarray) – A matrix of shape (train_count, response_count)
whose rows consist of response vectors of the train data.

• nn_count (int) – The number of nearest neighbors to employ.

• batch_count (int) – The number of elements to sample batch for hyperparameter opti-
mization.

• loss_method (str) – The loss method to use in hyperparameter optimization. Ignored if
all of the parameters specified by argument k_kwargs are fixed. Currently supports only
"mse" for regression.

• obj_method (str) – Indicates the objective function to be minimized. Currently restricted
to "loo_crossval".

• opt_method (str) – Indicates the optimization method to be used. Currently restricted to
"bayesian" and "scipy".

• sigma_method (Optional[str]) – The optimization method to be employed to learn
the sigma_sq hyperparameter. Currently supports only "analytic" and None. If

1.4. examples 33

MuyGPyS, Release 0.6.6

the value is not None, the returned MuyGPyS.gp.muygps.MultivariateMuyGPS object
will possess a sigma_sq member whose value, invoked via mmuygps.sigma_sq(), is a
(response_count,) vector to be used for scaling posterior variances.

• k_args (Union[List[Dict], Tuple[Dict, ...]]) – A list of response_count dicts con-
taining kernel initialization keyword arguments. Each dict specifies parameters for the ker-
nel, possibly including epsilon and sigma hyperparameter specifications and specifications
for specific kernel hyperparameters. If all of the hyperparameters are fixed or are not given
optimization bounds, no optimization will occur.

• nn_kwargs (Dict) – Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

• opt_kwargs (Dict) – Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

• verbose (bool) – If True, print summary statistics.

Return type
Tuple[MultivariateMuyGPS, NN_Wrapper]

Returns

• mmuygps – A Multivariate MuyGPs object with a separate (possibly trained) kernel function
associated with each response dimension.

• nbrs_lookup – A data structure supporting nearest neighbor queries into train_features.

MuyGPyS.examples.regress.make_regressor(train_features, train_targets, nn_count=30, batch_count=200,
loss_method='mse', obj_method='loo_crossval',
opt_method='bayes', sigma_method='analytic', k_kwargs={},
nn_kwargs={}, opt_kwargs={}, verbose=False)

Convenience function for creating MuyGPyS functor and neighbor lookup data structure.

Expected parameters include keyword argument dicts specifying kernel parameters and nearest neighbor param-
eters. See the docstrings of the appropriate functions for specifics.

Example

>>> from MuyGPyS.testing.test_utils import _make_gaussian_data
>>> from MuyGPyS.examples.regress import make_regressor
>>> train_features, train_responses = make_train() # stand-in function
>>> nn_kwargs = {"nn_method": "exact", "algorithm": "ball_tree"}
>>> k_kwargs = {
... "kern": "rbf",
... "metric": "F2",
... "eps": {"val": 1e-5},
... "length_scale": {"val": 1.0, "bounds": (1e-2, 1e2)}
... }
>>> muygps, nbrs_lookup = make_regressor(
... train_features,
... train_responses,
... nn_count=30,
... batch_count=200,
... loss_method="mse",
... obj_method="loo_crossval",

(continues on next page)

34 Chapter 1. Citation

MuyGPyS, Release 0.6.6

(continued from previous page)

... opt_method="bayes",

... sigma_method="analytic",

... k_kwargs=k_kwargs,

... nn_kwargs=nn_kwargs,

... verbose=False,

...)
>>> muygps, nbrs_lookup = make_regressor(
... train_features,
... train_responses,
... nn_count=30,
... batch_count=200,
... loss_method="mse",
... obj_method="loo_crossval",
... opt_method="bayes",
... sigma_method="analytic",
... k_kwargs=k_kwargs,
... nn_kwargs=nn_kwargs,
... verbose=False,
...)

Parameters

• train_features (ndarray) – A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

• train_targets (ndarray) – A matrix of shape (train_count, response_count)
whose rows consist of response vectors of the train data.

• nn_count (int) – The number of nearest neighbors to employ.

• batch_count (int) – The number of elements to sample batch for hyperparameter opti-
mization.

• loss_method (str) – The loss method to use in hyperparameter optimization. Ignored if
all of the parameters specified by argument k_kwargs are fixed. Currently supports only
"mse" for regression.

• obj_method (str) – Indicates the objective function to be minimized. Currently restricted
to "loo_crossval".

• opt_method (str) – Indicates the optimization method to be used. Currently restricted to
"bayesian" and "scipy".

• sigma_method (Optional[str]) – The optimization method to be employed to learn the
sigma_sq hyperparameter. Currently supports only "analytic" and None. If the value
is not None, the returned MuyGPyS.gp.muygps.MuyGPS object will possess a sigma_sq
member whose value, invoked via muygps.sigma_sq(), is a (response_count,) vector
to be used for scaling posterior variances.

• k_kwargs (Dict) – Parameters for the kernel, possibly including kernel type, distance met-
ric, epsilon and sigma hyperparameter specifications, and specifications for kernel hyperpa-
rameters. See kernels for examples and requirements. If all of the hyperparameters are fixed
or are not given optimization bounds, no optimization will occur.

• nn_kwargs (Dict) – Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

1.4. examples 35

MuyGPyS, Release 0.6.6

• opt_kwargs (Dict) – Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

• verbose (bool) – If True, print summary statistics.

Return type
Tuple[MuyGPS, NN_Wrapper]

Returns

• muygps – A (possibly trained) MuyGPs object.

• nbrs_lookup – A data structure supporting nearest neighbor queries into train_features.

MuyGPyS.examples.regress.regress_any(regressor, test_features, train_features, train_nbrs_lookup,
train_targets)

Simultaneously predicts the response for each test item.

Parameters

• regressor (Union[MuyGPS, MultivariateMuyGPS]) – Regressor object.

• test_features (ndarray) – Test observations of shape (test_count,
feature_count).

• train_features (ndarray) – Train observations of shape (train_count,
feature_count).

• train_nbrs_lookup (NN_Wrapper) – Trained nearest neighbor query data structure.

• train_targets (ndarray) – Observed response for all training data of shape
(train_count, class_count).

Return type
Tuple[ndarray, ndarray, Dict[str, float]]

Returns

• means – The predicted response of shape (test_count, response_count,) for each of
the test examples.

• variances – The independent posterior variances for each of the test examples. Of shape
(test_count,) if the argument regressor is an instance of MuyGPyS.gp.muygps.
MuyGPS, and of shape (test_count, response_count) if regressor is an instance of
MuyGPyS.gp.muygps.MultivariateMuyGPS.

• timing (dict) – Timing for the subroutines of this function.

1.4.2 fast_posterior_mean

Resources and high-level API for a fast posterior mean inference workflow.

make_fast_regressor() is a high-level API for creating the necessary components for fast posterior mean inference.
make_fast_multivariate_regressor() is a high-level API for creating the necessary components for fast posterior
mean inference with multiple outputs.

do_fast_posterior_mean() is a high-level api for executing a simple, generic fast posterior medan workflow given
data. It calls the maker APIs above and fast_posterior_mean_any().

36 Chapter 1. Citation

MuyGPyS, Release 0.6.6

MuyGPyS.examples.fast_posterior_mean.do_fast_posterior_mean(test_features, train_features,
train_targets, nn_count=30,
batch_count=200, loss_method='lool',
obj_method='loo_crossval',
opt_method='bayes',
sigma_method='analytic',
k_kwargs={}, nn_kwargs={},
opt_kwargs={}, verbose=False)

Convenience function initializing a model and performing fast posterior mean inference.

Expected parameters include keyword argument dicts specifying kernel parameters and nearest neighbor param-
eters. See the docstrings of the appropriate functions for specifics.

Also supports workflows relying upon multivariate models. In order to create a multivariate model, specify the
kern argument and pass a list of hyperparameter dicts to k_kwargs.

Example

>>> from MuyGPyS.testing.test_utils import _make_gaussian_data
>>> from MuyGPyS.examples.fast_posterior_mean import do_fast_posterior_mean
>>> from MuyGPyS.optimize.objective import mse_fn
>>> train, test = _make_gaussian_data(10000, 1000, 100, 10)
>>> nn_kwargs = {"nn_method": "exact", "algorithm": "ball_tree"}
>>> k_kwargs = {
... "kern": "rbf",
... "metric": "F2",
... "eps": {"val": 1e-5},
... "length_scale": {"val": 1.0, "bounds": (1e-2, 1e2)}
... }
>>> muygps, nbrs_lookup, predictions, precomputed_coefficients_matrix
... = do_fast_posterior_mean(
... test['input'],
... train['input'],
... train['output'],
... nn_count=30,
... batch_count=200,
... loss_method="mse",
... obj_method="loo_crossval",
... opt_method="bayes",
... k_kwargs=k_kwargs,
... nn_kwargs=nn_kwargs,
... verbose=False,
...)

Parameters

• test_features (ndarray) – A matrix of shape (test_count, feature_count) whose
rows consist of observation vectors of the test data.

• train_features (ndarray) – A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

• train_targets (ndarray) – A matrix of shape (train_count, response_count)
whose rows consist of response vectors of the train data.

1.4. examples 37

MuyGPyS, Release 0.6.6

• nn_count (int) – The number of nearest neighbors to employ.

• batch_count (int) – The number of elements to sample batch for hyperparameter opti-
mization.

• loss_method (str) – The loss method to use in hyperparameter optimization. Ignored if
all of the parameters specified by argument k_kwargs are fixed. Currently supports only
"mse" for posterior mean inference.

• obj_method (str) – Indicates the objective function to be minimized. Currently restricted
to "loo_crossval".

• opt_method (str) – Indicates the optimization method to be used. Currently restricted to
"bayesian" and "scipy".

• sigma_method (Optional[str]) – The optimization method to be employed to learn the
sigma_sq hyperparameter. Currently supports only "analytic" and None. If the value
is not None, the returned MuyGPyS.gp.muygps.MuyGPS object will possess a sigma_sq
member whose value, invoked via muygps.sigma_sq(), is a (response_count,) vector
to be used for scaling posterior variances.

• k_kwargs (Union[Dict, List[Dict], Tuple[Dict, ...]]) – If given a list or tu-
ple of length response_count, assume that the elements are dicts containing ker-
nel initialization keyword arguments for the creation of a multivariate model (see
make_multivariate_regressor()). If given a dict, assume that the elements are key-
word arguments to a MuyGPs model (see make_regressor()).

• nn_kwargs (Dict) – Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

• opt_kwargs (Dict) – Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

• verbose (bool) – If True, print summary statistics.

Return type
Tuple[ndarray, NN_Wrapper, ndarray, ndarray, Dict]

Returns

• muygps – A (possibly trained) MuyGPs object.

• nbrs_lookup – A data structure supporting nearest neighbor queries into train_features.

• predictions – The predicted response associated with each test observation.

• precomputed_coefficients_matrix – A matrix of shape (train_count, nn_count) whose
rows list the precomputed coefficients for each nearest neighbors set in the training data.

• timing – A dictionary containing timings for the training, precomputation, nearest neighbor
computation, and prediction.

MuyGPyS.examples.fast_posterior_mean.fast_posterior_mean_any(muygps, test_features, train_features,
nbrs_lookup, train_targets)

Convenience function performing fast posterior mean inference using a pre-trained model.

Also supports workflows relying upon multivariate models.

Parameters

• muygps (Union[MuyGPS, MultivariateMuyGPS]) – A (possibly trained) MuyGPS object.

• test_features (ndarray) – A matrix of shape (test_count, feature_count) whose
rows consist of observation vectors of the test data.

38 Chapter 1. Citation

MuyGPyS, Release 0.6.6

• train_features (ndarray) – A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

• nbrs_lookup (NN_Wrapper) – A data structure supporting nearest neighbor queries into
train_features.

• train_targets (ndarray) – A matrix of shape (train_count, response_count)
whose rows consist of response vectors of the train data.

Return type
Tuple[ndarray, ndarray, Dict]

Returns

• posterior_mean – The predicted response associated with each test observation.

• precomputed_coefficients_matrix – A matrix of shape (train_count, nn_count) whose
rows list the precomputed coefficients for each nearest neighbors set in the training data.

• timing – A dictionary containing timings for the training, precomputation, nearest neighbor
computation, and prediction.

MuyGPyS.examples.fast_posterior_mean.make_fast_multivariate_regressor(mmuygps, nbrs_lookup,
train_features,
train_targets)

Convenience function for creating precomputed coefficient matrix and neighbor lookup data structure.

Parameters

• muygps – A trained MultivariateMuyGPS object.

• nbrs_lookup (NN_Wrapper) – A data structure supporting nearest neighbor queries into
train_features.

• train_features (ndarray) – A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

• train_targets (ndarray) – A matrix of shape (train_count, response_count)
whose rows consist of response vectors of the train data.

Return type
Tuple[ndarray, ndarray]

Returns

• precomputed_coefficients_matrix – A matrix of shape (train_count, nn_count) whose
rows list the precomputed coefficients for each nearest neighbors set in the training data.

• nn_indices – An array supporting nearest neighbor queries.

MuyGPyS.examples.fast_posterior_mean.make_fast_regressor(muygps, nbrs_lookup, train_features,
train_targets)

Convenience function for creating precomputed coefficient matrix and neighbor lookup data structure.

Parameters

• muygps (MuyGPS) – A (possibly trained) MuyGPS object.

• nbrs_lookup (NN_Wrapper) – A data structure supporting nearest neighbor queries into
train_features.

• train_features (ndarray) – A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

1.4. examples 39

MuyGPyS, Release 0.6.6

• train_targets (ndarray) – A matrix of shape (train_count, response_count)
whose rows consist of response vectors of the train data.

Return type
Tuple[ndarray, ndarray]

Returns

• precomputed_coefficients_matrix – A matrix of shape (train_count, nn_count) whose
rows list the precomputed coefficients for each nearest neighbors set in the training data.

• nn_indices – A numpy.ndarrray supporting nearest neighbor queries.

1.4.3 classify

Resources and high-level API for a simple classification workflow.

make_classifier() is a high-level API for creating and training MuyGPyS.gp.muygps.MuyGPS objects for classi-
fication. make_multivariate_classifier() is a high-level API for creating and training MuyGPyS.gp.muygps.
MultivariateMuyGPS objects for classification.

do_classify() is a high-level api for executing a simple, generic classification workflow given data. It calls the maker
APIs above and classify_any().

MuyGPyS.examples.classify.classify_any(surrogate, test_features, train_features, train_nbrs_lookup,
train_labels)

Simulatneously predicts the surrogate regression means for each test item.

Parameters

• surrogate (Union[MuyGPS, MultivariateMuyGPS]) – Surrogate regressor.

• test_features (ndarray) – Test observations of shape (test_count,
feature_count).

• train_features (ndarray) – Train observations of shape (train_count,
feature_count).

• train_nbrs_lookup (NN_Wrapper) – Trained nearest neighbor query data structure.

• train_labels (ndarray) – One-hot encoding of class labels for all training data of shape
(train_count, class_count).

Return type
Tuple[ndarray, Dict[str, float]]

Returns

• predictions – The surrogate predictions of shape (test_count, class_count) for each
test observation.

• timing – Timing for the subroutines of this function.

MuyGPyS.examples.classify.do_classify(test_features, train_features, train_labels, nn_count=30,
batch_count=200, loss_method='log', obj_method='loo_crossval',
opt_method='bayes', k_kwargs={}, nn_kwargs={}, opt_kwargs={},
verbose=False)

Convenience function for initializing a model and performing surrogate classification.

Expected parameters include keyword argument dicts specifying kernel parameters and nearest neighbor param-
eters. See the docstrings of the appropriate functions for specifics.

40 Chapter 1. Citation

MuyGPyS, Release 0.6.6

Example

>>> import numpy as np
>>> from MuyGPyS.testing.test_utils import _make_gaussian_data
>>> from MuyGPyS.examples.classify import do_classify
>>> train, test = _make_gaussian_dict(10000, 100, 100, 10, categorial=True)
>>> nn_kwargs = {"nn_method": "exact", "algorithm": "ball_tree"}
>>> k_kwargs = {
... "kernel": RBF(
... metric=IsotropicDistortion(
... l2,
... length_scale=ScalarHyperparameter(1.0, (1e-2, 1e2)),
...),
...),
... "eps": HomoscedasticNoise(1e-5),
...)
>>> muygps, nbrs_lookup, surrogate_predictions = do_classify(
... test['input'],
... train['input'],
... train['output'],
... nn_count=30,
... batch_count=200,
... loss_method="log",
... obj_method="loo_crossval",
... opt_method="bayes",
... k_kwargs=k_kwargs,
... nn_kwargs=nn_kwargs,
... verbose=False,
...)
>>> predicted_labels = np.argmax(surrogate_predictions, axis=1)
>>> true_labels = np.argmax(test['output'], axis=1)
>>> acc = np.mean(predicted_labels == true_labels)
>>> print(f"obtained accuracy {acc}")
obtained accuracy: 0.973...

Parameters

• test_features (ndarray) – A matrix of shape (test_count, feature_count) whose
rows consist of observation vectors of the test data.

• train_features (ndarray) – A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

• train_labels (ndarray) – A matrix of shape (train_count, response_count)
whose rows consist of label vectors for the training data.

• nn_count (int) – The number of nearest neighbors to employ.

• batch_count (int) – The batch size for hyperparameter optimization.

• loss_method (str) – The loss method to use in hyperparameter optimization. Ignored if
all of the parameters specified by k_kwargs are fixed. Currently supports only "log" (also
known as "cross_entropy") and "mse" for classification.

• obj_method (str) – Indicates the objective function to be minimized. Currently restricted
to "loo_crossval".

1.4. examples 41

MuyGPyS, Release 0.6.6

• opt_method (str) – Indicates the optimization method to be used. Currently restricted to
"bayesian" and "scipy".

• k_kwargs (Union[Dict, List[Dict], Tuple[Dict, ...]]) – Parameters for the kernel, pos-
sibly including kernel type, distance metric, epsilon and sigma hyperparameter specifica-
tions, and specifications for kernel hyperparameters. If all of the hyperparameters are fixed
or are not given optimization bounds, no optimization will occur. If "kern" is specified and
"k_kwargs" is a list of such dicts, will create a multivariate classifier model.

• nn_kwargs (Dict) – Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

• opt_kwargs (Dict) – Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

• verbose (bool) – If True, print summary statistics.

Return type
Tuple[Union[MuyGPS, MultivariateMuyGPS], NN_Wrapper, ndarray]

Returns

• muygps – A (possibly trained) MuyGPs object.

• nbrs_lookup – A data structure supporting nearest neighbor queries into train_features.

• surrogate_predictions – A matrix of shape (test_count, response_count) whose rows
indicate the surrogate predictions of the model. The predicted classes are given by the indices
of the largest elements of each row.

MuyGPyS.examples.classify.make_classifier(train_features, train_labels, nn_count=30, batch_count=200,
loss_method='log', obj_method='loo_crossval',
opt_method='bayes', k_kwargs={}, nn_kwargs={},
opt_kwargs={}, verbose=False)

Convenience function for creating MuyGPyS functor and neighbor lookup data structure.

Expected parameters include keyword argument dicts specifying kernel parameters and nearest neighbor param-
eters. See the docstrings of the appropriate functions for specifics.

Example

>>> from MuyGPyS.testing.test_utils import _make_gaussian_data
>>> from MuyGPyS.examples.classify import make_classifier
>>> train = _make_gaussian_dict(10000, 100, 10, categorial=True)
>>> nn_kwargs = {"nn_method": "exact", "algorithm": "ball_tree"}
>>> k_kwargs = {
... "kern": "rbf",
... "metric": "F2",
... "eps": {"val": 1e-5},
... "length_scale": {"val": 1.0, "bounds": (1e-2, 1e2)},
... }
>>> muygps, nbrs_lookup = make_classifier(
... train['input'],
... train['output'],
... nn_count=30,
... batch_count=200,
... loss_method="log",

(continues on next page)

42 Chapter 1. Citation

MuyGPyS, Release 0.6.6

(continued from previous page)

... obj_method="loo_crossval",

... opt_method="bayes",

... k_kwargs=k_kwargs,

... nn_kwargs=nn_kwargs,

... verbose=False,

...)
>>> muygps, nbrs_lookup = make_classifier(
... train['input'],
... train['output'],
... nn_count=30,
... batch_count=200,
... loss_method="log",
... obj_method="loo_crossval",
... opt_method="bayes",
... k_kwargs=k_kwargs,
... nn_kwargs=nn_kwargs,
... verbose=False,
...)

Parameters

• train_features (ndarray) – A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

• train_labels (ndarray) – A matrix of shape (train_count, class_count) whose
rows consist of one-hot class label vectors of the train data.

• nn_count (int) – The number of nearest neighbors to employ.

• batch_count (int) – The number of elements to sample batch for hyperparameter opti-
mization.

• loss_method (str) – The loss method to use in hyperparameter optimization. Ignored if
all of the parameters specified by argument k_kwargs are fixed. Currently supports only
"log" (or "cross-entropy") and "mse" for classification.

• opt_method (str) – Indicates the optimization method to be used. Currently restricted to
"bayesian" and "scipy".

• obj_method (str) – Indicates the objective function to be minimized. Currently restricted
to "loo_crossval".

• k_kwargs (Dict) – Parameters for the kernel, possibly including kernel type, distance met-
ric, epsilon and sigma hyperparameter specifications, and specifications for kernel hyperpa-
rameters. See kernels for examples and requirements. If all of the hyperparameters are fixed
or are not given optimization bounds, no optimization will occur.

• nn_kwargs (Dict) – Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

• opt_kwargs (Dict) – Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

• verbose (bool) – Boolean If True, print summary statistics.

Return type
Tuple[MuyGPS, NN_Wrapper]

Returns

1.4. examples 43

MuyGPyS, Release 0.6.6

• muygps – A (possibly trained) MuyGPs object.

• nbrs_lookup – A data structure supporting nearest neighbor queries into train_features.

MuyGPyS.examples.classify.make_multivariate_classifier(train_features, train_labels, nn_count=30,
batch_count=200, loss_method='mse',
obj_method='loo_crossval',
opt_method='bayes', k_args=[],
nn_kwargs={}, opt_kwargs={},
verbose=False)

Convenience function for creating MuyGPyS functor and neighbor lookup data structure.

Expected parameters include keyword argument dicts specifying kernel parameters and nearest neighbor param-
eters. See the docstrings of the appropriate functions for specifics.

Example

>>> from MuyGPyS.testing.test_utils import _make_gaussian_data
>>> from MuyGPyS.examples.classif import make_multivariate_classifier
>>> train = _make_gaussian_dict(10000, 100, 10, categorial=True)
>>> nn_kwargs = {"nn_method": "exact", "algorithm": "ball_tree"}
>>> k_args = [
... {
... "length_scale": {"val": 1.0, "bounds": (1e-2, 1e2)}
... "eps": {"val": 1e-5},
... },
... {
... "length_scale": {"val": 1.5, "bounds": (1e-2, 1e2)}
... "eps": {"val": 1e-5},
... },
...]
>>> mmuygps, nbrs_lookup = make_multivariate_classifier(
... train['input'],
... train['output'],
... nn_count=30,
... batch_count=200,
... loss_method="mse",
... obj_method="loo_crossval",
... opt_method="bayes",
... k_args=k_args,
... nn_kwargs=nn_kwargs,
... verbose=False,
...)
>>> mmuygps, nbrs_lookup = make_multivariate_classifier(
... train['input'],
... train['output'],
... nn_count=30,
... batch_count=200,
... loss_method="mse",
... obj_method="loo_crossval",
... opt_method="bayes",
... k_args=k_args,
... nn_kwargs=nn_kwargs,

(continues on next page)

44 Chapter 1. Citation

MuyGPyS, Release 0.6.6

(continued from previous page)

... verbose=False,

...)

Parameters

• train_features (ndarray) – A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

• train_labels (ndarray) – A matrix of shape (train_count, class_count) whose
rows consist of one-hot encoded label vectors of the train data.

• nn_count (int) – The number of nearest neighbors to employ.

• batch_count (int) – The number of elements to sample batch for hyperparameter opti-
mization.

• loss_method (str) – The loss method to use in hyperparameter optimization. Ignored if
all of the parameters specified by argument k_kwargs are fixed. Currently supports only
"log" for classification.

• obj_method (str) – Indicates the objective function to be minimized. Currently restricted
to "loo_crossval".

• opt_method (str) – Indicates the optimization method to be used. Currently restricted to
"bayesian" and "scipy".

• k_args (Union[List[Dict], Tuple[Dict, ...]]) – A list of response_count dicts con-
taining kernel initialization keyword arguments. Each dict specifies parameters for the ker-
nel, possibly including epsilon and sigma hyperparameter specifications and specifications
for specific kernel hyperparameters. If all of the hyperparameters are fixed or are not given
optimization bounds, no optimization will occur.

• nn_kwargs (Dict) – Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

• opt_kwargs (Dict) – Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

• verbose (bool) – If True, print summary statistics.

Return type
Tuple[MultivariateMuyGPS, NN_Wrapper]

Returns

• muygps – A (possibly trained) MuyGPs object.

• nbrs_lookup – A data structure supporting nearest neighbor queries into train_features.

1.4.4 two-class classify with uq

Resources and high-level API for a two-class classification with UQ workflow.

Implements a two-class classification workflow with a bespoke uncertainty quantification tuning method.
[muyskens2021star] describes this method and its application to a star-galaxy image separation problem.

do_classify_uq() is a high-level api for executing a two-class classification workflow with the uncertainty quan-
tification. It calls the maker APIs MuyGPyS.examples.classify.make_classifier() and MuyGPyS.examples.
classify.make_multivariate_classifier() to create and train models, and performs the inference using the
functions classify_two_class_uq(), make_masks(), and train_two_class_interval(). do_uq() takes the

1.4. examples 45

MuyGPyS, Release 0.6.6

true labels of the test data and the surrgoate_prediction and masks outputs to report the statistics of the confidence
intervals associated with each supplied objective function.

MuyGPyS.examples.two_class_classify_uq.classify_two_class_uq(surrogate, test_features,
train_features, train_nbrs_lookup,
train_labels)

Simultaneously predicts the surrogate means and variances for each test item under the assumption of binary
classification.

Parameters

• surrogate (Union[MuyGPS, MultivariateMuyGPS]) – Surrogate regressor.

• test_features (ndarray) – Test observations of shape (test_count,
feature_count).

• train_features (ndarray) – Train observations of shape (train_count,
feature_count).

• train_nbrs_lookup (NN_Wrapper) – Trained nearest neighbor query data structure.

• train_labels (ndarray) – One-hot encoding of class labels for all training data of shape
(train_count, class_count).

Return type
Tuple[ndarray, ndarray, Dict[str, float]]

Returns

• means – The surrogate predictions for each test observation of shape (test_count, 2).

• variances – The posterior variances for each test observation of shape (test_count,)

• timing – Timing for the subroutines of this function.

MuyGPyS.examples.two_class_classify_uq.do_classify_uq(test_features, train_features, train_labels,
nn_count=30, opt_batch_count=200,
uq_batch_count=500, loss_method='log',
obj_method='loo_crossval',
opt_method='bayes',
uq_objectives=[<function <lambda>>,
<function <lambda>>, <function
<lambda>>, <function <lambda>>,
<function <lambda>>], k_kwargs={},
nn_kwargs={}, opt_kwargs={},
verbose=False)

Convenience function for initializing a model and performing two-class surrogate classification, while tuning
uncertainty quantification.

Performs the classification workflow with uncertainty quantification tuning as described in [muyskens2021star].

Expected parameters include keyword argument dicts specifying kernel parameters and nearest neighbor param-
eters. See the docstrings of the appropriate functions for specifics.

46 Chapter 1. Citation

MuyGPyS, Release 0.6.6

Example

>>> import numpy as np
>>> from MuyGPyS.testing.test_utils import _make_gaussian_data
>>> from MuyGPyS.examples.regress import do_classify_uq, do_uq
>>> train, test = _make_gaussian_dict(10000, 100, 100, 10, categorial=True)
>>> nn_kwargs = {"nn_method": "exact", "algorithm": "ball_tree"}
>>> k_kwargs = {
... "kern": "rbf",
... "metric": "F2",
... "eps": {"val": 1e-5},
... "length_scale": {"val": 1.0, "bounds": (1e-2, 1e2)},
... }
>>> muygps, nbrs_lookup, surrogate_predictions = do_classify(
... test['input'],
... train['input'],
... train['output'],
... nn_count=30,
... batch_count=200,
... loss_method="log",
... obj_method="loo_crossval",
... opt_method="bayes",
... k_kwargs=k_kwargs,
... nn_kwargs=nn_kwargs,
... verbose=False,
...)
>>> accuracy, uq = do_uq(surrogate_predictions, test['output'], masks)
>>> print(f"obtained accuracy {accuracy}")
obtained accuracy: 0.973...
>>> print(f"obtained mask uq : \n{uq}")
obtained mask uq :
[[8.21000000e+02 8.53836784e-01 9.87144569e-01]
[8.59000000e+02 8.55646100e-01 9.87528717e-01]
[1.03500000e+03 8.66666667e-01 9.88845510e-01]
[1.03500000e+03 8.66666667e-01 9.88845510e-01]
[5.80000000e+01 6.72413793e-01 9.77972239e-01]]

Parameters

• test_features (ndarray) – A matrix of shape (test_count, feature_count) whose
rows consist of observation vectors of the test data.

• train_features (ndarray) – A matrix of shape (train_count, feature_count)
whose rows consist of observation vectors of the train data.

• train_labels (ndarray) – A matrix of shape (train_count, response_count)
whose rows consist of label vectors for the training data.

• nn_count (int) – The number of nearest neighbors to employ.

• opt_batch_count (int) – The batch size for hyperparameter optimization.

• uq_batch_count (int) – The batch size for uncertainty quantification calibration.

• loss_method (str) – The loss method to use in hyperparameter optimization. Ignored if
all of the parameters specified by k_kwargs are fixed. Currently supports only "log" (also
known as "cross_entropy") and "mse" for classification.

1.4. examples 47

MuyGPyS, Release 0.6.6

• obj_method (str) – Indicates the objective function to be minimized. Currently restricted
to "loo_crossval".

• opt_method (str) – Indicates the optimization method to be used. Currently restricted to
"bayesian" and "scipy".

• uq_objectives (Union[List[Callable], Tuple[Callable, ...]]) – list(Callable) List
of objective_count`functions taking four arguments: bit masks `alpha
and beta - the type 1 and type 2 error counts at each grid location, respectively - and
the numbers of correctly and incorrectly classified training examples. Used to tune the
scale parameter 𝜎2 for setting confidence intervals. See MuyGPyS.examples.classify.
example_lambdas for examples.

• k_kwargs (Dict) – Parameters for the kernel, possibly including kernel type, distance met-
ric, epsilon and sigma hyperparameter specifications, and specifications for kernel hyperpa-
rameters. If all of the hyperparameters are fixed or are not given optimization bounds, no
optimization will occur.

• nn_kwargs (Dict) – Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

• opt_kwargs (Dict) – Parameters for the wrapped optimizer. See the docs of the corre-
sponding library for supported parameters.

• verbose (bool) – If True, print summary statistics.

Return type
Tuple[MuyGPS, NN_Wrapper, ndarray, ndarray]

Returns

• muygps – A (possibly trained) MuyGPs object.

• nbrs_lookup – A data structure supporting nearest neighbor queries into train_features.

• surrogate_predictions – A matrix of shape (test_count, response_count) whose rows
indicate the surrogate predictions of the model. The predicted classes are given by the indices
of the largest elements of each row.

• masks – A matrix of shape (objective_count, test_count) whose rows consist of in-
dex masks into the training set. Each True index includes 0.0 within the associated predic-
tion’s confidence interval.

MuyGPyS.examples.two_class_classify_uq.do_uq(surrogate_predictions, test_labels, masks)
Convenience function performing uncertainty quantification given predicted labels and ground truth for a given
set of confidence interval scales.

Parameters

• predictions – A matrix of shape (test_count, class_count) whose rows consist of
the surrogate predictions.

• test_labels (ndarray) – A matrix of shape (test_count, class_count) listing the
true one-hot encodings of each test observation’s class.

• masks (ndarray) – A matrix of shape (objective_count, test_count) whose rows
consist of index masks into the training set. Each True index includes 0.0 within the asso-
ciated prediction’s confidence interval.

Return type
Tuple[float, ndarray]

Returns

48 Chapter 1. Citation

MuyGPyS, Release 0.6.6

• accuracy – The accuracy over all of the test data.

• uq – A matrix of shape (objective_count, 3) listing the uncertainty quantification asso-
ciated with each input mask (i.e. each objective function). The first column is the total num-
ber of ambiguous samples, i.e. those whose confidence interval contains the mid_value,
usually 0.0. The second column is the accuracy of the ambiguous samples. The third col-
umn is the accuracy of the unambiguous samples.

MuyGPyS.examples.two_class_classify_uq.make_masks(predictions, cutoffs, variances, mid_value)
Compute boolean masks over all of the test data indicating which test indices are considered ambiguous

Parameters

• predictions (ndarray) – A matrix of shape (test_count, class_count) whose rows
consist of the surrogate predictions.

• cutoffs (ndarray) – A vector of shape (objective_count,) indicating the confidence
interval scale parameter 𝜎2 that minimizes each of the considered objective function.

• variances (ndarray) – A vector of shape (test_count, 1) indicating the diagonal pos-
terior variance of each test item.

• mid_value (float) – The discriminating value determining absolute uncertainty. Usually
0.0 or 0.5.

Return type
ndarray

Returns
A matrix of shape (objective_count, test_count) whose rows consist of index masks into
the training set. Each True index includes mid_value within the associated prediction’s confi-
dence interval.

MuyGPyS.examples.two_class_classify_uq.train_two_class_interval(surrogate, batch_indices,
batch_nn_indices, train_features,
train_responses, train_labels,
objective_fns)

For 2-class classification problems, get estimate of the confidence interval scaling parameter.

Parameters

• surrogate (MuyGPS) – Surrogate regressor.

• batch_indices (ndarray) – Batch observation indices of shape (batch_count).

• batch_nn_indices (ndarray) – Indices of the nearest neighbors of shape
(batch_count, nn_count).

• train – The full training data matrix of shape (train_count, feature_count).

• train_responses (ndarray) – One-hot encoding of class labels for all training data of
shape (train_count, class_count).

• train_labels (ndarray) – List of class labels for all training data of shape
(train_count,).

• objective_fns (Union[List[Callable], Tuple[Callable, ...]]) – A collection of
objective_count functions taking the four arguments bit masks alpha and beta - the type 1
and type 2 error counts at each grid location, respectively - and the numbers of correctly and
incorrectly classified training examples. Each objective function effervesces a cutoff value
to calibrate UQ for class decision-making.

1.4. examples 49

MuyGPyS, Release 0.6.6

Return type
ndarray

Returns
A vector of shape (objective_count) indicating the confidence interval scale parameter that
minimizes each considered objective function.

1.4.5 muygps_torch

Resources and high-level API for a deep kernel learning with MuyGPs.

train_deep_kernel_muygps() is a high-level API for training deep kernel MuyGPs models for regression.

predict_model() is a high-level API for generating predictions at test locations given a trained model.

MuyGPyS.examples.muygps_torch.predict_model(model, test_features, train_features, train_responses,
nbrs_lookup, nn_count)

Generate predictions using a PyTorch model containing a MuyGPyS.torch.muygps_layer.MuyGPs_layer
layer or a MuyGPyS.torch.muygps_layer.MultivariateMuyGPs_layer layer in its structure. Note that the
custom PyTorch layers for MuyGPs objects only support the Matern kernel. Support for more kernels will be
added in future releases.

Example

>>> #model must be defined as a PyTorch model inheriting from
... #torch.nn.Module. Must have two components: model.embedding
... #(e.g., a neural net) and another component model.GP_layer.
>>> from MuyGPyS.testing.test_utils import _make_gaussian_data
>>> from MuyGPyS.neighbors import NN_Wrapper
>>> train, test = _make_gaussian_data(10000, 1000, 100, 10)
>>> nn_count = 10
>>> nbrs_lookup = NN_Wrapper(train['input'], nn_count, nn_method="hnsw")
>>> predictions, variances = predict_model(
... model,
... torch.from_numpy(test['input']),
... torch.from_numpy(train['input']),
... torch.from_numpy(train['output']),
... nbrs_lookup,
... nn_count)

Parameters

• model – A custom PyTorch.nn.Module object containing an embedding component and one
MuyGPs_layer or MultivariateMuyGPS_layer layer.

• test_features (Tensor) – A torch.Tensor of shape (test_count, feature_count)
containing the test features to be regressed.

• train_features (Tensor) – A torch.Tensor of shape (train_count, feature_count)
containing the training features.

• train_responses (Tensor) – A torch.Tensor of shape (train_count,
response_count) containing the training responses corresponding to each feature.

• nbrs_lookup (NN_Wrapper) – A NN_Wrapper nearest neighbor lookup data structure.

50 Chapter 1. Citation

MuyGPyS, Release 0.6.6

Returns

• predictions – A torch.Tensor of shape (test_count, response_count) whose rows are
the predicted response for each of the given test feature.

• variances – A torch.Tensor of shape (batch_count,) consisting of the diagonal elements
of the posterior variance, or a matrix of shape (batch_count, response_count) for a
multidimensional response.

MuyGPyS.examples.muygps_torch.predict_multiple_model(model, test_features, train_features,
train_responses, nbrs_lookup, nn_count)

Generate predictions using a PyTorch model containing a MuyGPyS.torch.muygps_layer.
MultivariateMuyGPs_layer in its structure. Meant for the case in which there is more than one GP
model used to model multiple outputs. Note that the custom PyTorch MultivariateMuyGPs_layer objects only
support the Matern kernel. Support for more kernels will be added in future releases.

Parameters

• model – A custom PyTorch.nn.Module object containing an embedding component and one
MuyGPyS.torch.muygps_layer.MultivariateMuyGPs_layer layer.

• test_features (Tensor) – A torch.Tensor of shape (test_count, feature_count)
containing the test features to be regressed.

• train_features (Tensor) – A torch.Tensor of shape (train_count, feature_count)
containing the training features.

• train_responses (Tensor) – A torch.Tensor of shape (train_count,
response_count) containing the training responses corresponding to each feature.

• nbrs_lookup (NN_Wrapper) – A NN_Wrapper nearest neighbor lookup data structure.

Returns

• predictions – A torch.Tensor of shape (test_count, response_count) whose rows are
the predicted response for each of the given test feature.

• variances – A torch.Tensor of shape (batch_count,) consisting of the diagonal elements
of the posterior variance, or a matrix of shape (batch_count, response_count) for a
multidimensional response.

MuyGPyS.examples.muygps_torch.predict_single_model(model, test_features, train_features,
train_responses, nbrs_lookup, nn_count)

Generate predictions using a PyTorch model containing at least one MuyGPyS.torch.muygps_layer.
MuyGPs_layer in its structure. Note that the custom PyTorch MuyGPs_layer objects only support the Matern
kernel. Support for more kernels will be added in future releases.

Parameters

• model – A custom PyTorch.nn.Module object containing an embedding component and one
MuyGPyS.torch.muygps_layer.MuyGPs_layer layer.

• test_features (Tensor) – A torch.Tensor of shape (test_count, feature_count)
containing the test features to be regressed.

• train_features (Tensor) – A torch.Tensor of shape (train_count, feature_count)
containing the training features.

• train_responses (Tensor) – A torch.Tensor of shape (train_count,
response_count) containing the training responses corresponding to each feature.

• nbrs_lookup (NN_Wrapper) – A NN_Wrapper nearest neighbor lookup data structure.

1.4. examples 51

MuyGPyS, Release 0.6.6

Returns

• predictions – A torch.Tensor of shape (test_count, response_count) whose rows are
the predicted response for each of the given test feature.

• variances – A torch.Tensor of shape (batch_count,response_count) shape consisting
of the diagonal elements of the posterior variance.

MuyGPyS.examples.muygps_torch.train_deep_kernel_muygps(model, train_features, train_responses,
batch_indices, nbrs_lookup,
training_iterations=10,
optimizer_method=<class
'torch.optim.adam.Adam'>,
learning_rate=0.001,
scheduler_decay=0.95, loss_function='lool',
update_frequency=1, verbose=False,
nn_kwargs={})

Train a PyTorch model containing an embedding component and a MuyGPyS.torch.muygps_layer.
MuyGPs_layer layer or a MuyGPyS.torch.muygps_layer. MultivariateMuyGPs_layer layer in its struc-
ture. Note that the custom PyTorch layers for MuyGPs models only support the Matern kernel. Support for more
kernels will be added in future releases.

Example

>>> #model must be defined as a PyTorch model inheriting from
... #torch.nn.Module. Must have two components: model.embedding
... #(e.g., a neural net) and another component model.GP_layer.
>>> from MuyGPyS.testing.test_utils import _make_gaussian_data
>>> from MuyGPyS.neighbors import NN_Wrapper
>>> from MuyGPyS.examples.muygps_torch import train_deep_kernel_muygps
>>> from MuyGPyS._src.optimize.loss import _lool_fn as lool_fn
>>> train, test = _make_gaussian_data(10000, 1000, 100, 10)
>>> nn_count = 10
>>> nbrs_lookup = NN_Wrapper(train['input'], nn_count, nn_method="hnsw")
>>> batch_count = 100
>>> train_count = 10000
>>> batch_indices, batch_nn_indices = sample_batch(nbrs_lookup,
... batch_count, train_count)
>>> nbrs_struct, model_trained = train_deep_kernel_muygps(
... model=model,
... train_features=torch.from_numpy(train['input']),
... train_responses=torch.from_numpy(train['output']),
... batch_indices=torch.from_numpy(batch_indices),
... nbrs_lookup=nbrs_lookup,
... training_iterations=10,
... optimizer_method=torch.optim.Adam,
... learning_rate=1e-3,
... scheduler_decay=0.95,
... loss_function=lool_fn,
... update_frequency=1)

Parameters

52 Chapter 1. Citation

MuyGPyS, Release 0.6.6

• model – A custom PyTorch.nn.Module object containing at least one embedding layer and
one MuyGPs_layer or MultivariateMuyGPS_layer layer.

• train_features (Tensor) – A torch.Tensor of shape (train_count, feature_count)
containing the training features.

• train_responses (Tensor) – A torch.Tensor of shape (train_count,
response_count) containing the training responses corresponding to each feature.

• batch_indices (Tensor) – A torch.Tensor of shape (batch_count,) containing the in-
dices of the training batch.

• nbrs_lookup (NN_Wrapper) – A NN_Wrapper nearest neighbor lookup data structure.

• training_iterations – The number of training iterations to be used in training.

• method (optimizer) – An optimization method from the torch.optim class.

• learning_rate – The learning rate to be applied during training.

• schedule_decay – The exponential decay rate to be applied to the learning rate.

• function (loss) – The loss function to be used in training. Defaults to “lool” for leave-
one-out likelihood. Other options are “mse” for mean-squared error, “ce” for cross entropy
loss, “bce” for binary cross entropy loss, and “l1” for L1 loss.

• update_frequency – Tells the training procedure how frequently the nearest neighbor
structure should be updated. An update frequency of n indicates that every n epochs the
nearest neighbor structure should be updated.

• verbose – Indicates whether or not to include print statements during training.

• nn_kwargs (Dict) – Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

Returns

• nbrs_lookup – A NN_Wrapper object containing the nearest neighbors of the embedded
training data.

• model – A trained deep kernel MuyGPs model.

MuyGPyS.examples.muygps_torch.update_nearest_neighbors(model, train_features, train_responses,
batch_indices, nn_count, nn_kwargs={})

Update the nearest neighbors after deformation via a PyTorch model containing an embedding compo-
nent and a MuyGPyS.torch.muygps_layer.MuyGPs_layer layer or a MuyGPyS.torch.muygps_layer.
MultivariateMuyGPs_layer layer in its structure.

Example

>>> #model must be defined as a PyTorch model inheriting from
... #torch.nn.Module. Must have two components: model.embedding
... #(e.g., a neural net) and another component model.GP_layer.
>>> from MuyGPyS.testing.test_utils import _make_gaussian_data
>>> from MuyGPyS.neighbors import NN_Wrapper
>>> from MuyGPyS.examples.muygps_torch import update_nearest_neighbors
>>> train, test = _make_gaussian_data(10000, 1000, 100, 10)
>>> nn_count = 10
>>> batch_count = 100

(continues on next page)

1.4. examples 53

MuyGPyS, Release 0.6.6

(continued from previous page)

>>> train_count = 10000
>>> batch_indices, batch_nn_indices = sample_batch(nbrs_lookup, batch_count, train_
→˓count)
>>> nbrs_struct, model_trained = update_nearest_neighbors(
... model=model,
... train_features=torch.from_numpy(train['input']),
... train_responses=torch.from_numpy(train['output']),
... batch_indices=torch.from_numpy(batch_indices),
... nn_count=nn_count,)

Parameters

• model – A custom PyTorch.nn.Module object containing at least one embedding layer and
one MuyGPs_layer or MultivariateMuyGPS_layer layer.

• train_features (Tensor) – A torch.Tensor of shape (train_count, feature_count)
containing the training features.

• train_responses (Tensor) – A torch.Tensor of shape (train_count,
response_count) containing the training responses corresponding to each feature.

• batch_indices (Tensor) – A torch.Tensor of shape (batch_count,) containing the in-
dices of the training batch.

• nn_count (int) – A torch.int64 giving the number of nearest neighbors.

• nn_kwargs (Dict) – Parameters for the nearest neighbors wrapper. See MuyGPyS.
neighbors.NN_Wrapper for the supported methods and their parameters.

Returns

• nbrs_lookup – A NN_Wrapper object containing the updated nearest neighbors of the em-
bedded training data.

• model – A deep kernel MuyGPs model with updated nearest neighbors.

1.5 torch

MuyGPyS.torch module reference.

1.5.1 muygps_layer

MuyGPs PyTorch implementation

class MuyGPyS.torch.muygps_layer.MuyGPs_layer(muygps_model, batch_indices, batch_nn_indices,
batch_targets, batch_nn_targets)

MuyGPs model written as a custom PyTorch layer using nn.Module.

Implements the MuyGPs algorithm as articulated in [muyskens2021muygps]. See documentation on MuyGPs
class for more detail.

The MuyGPs_layer class only supports the Matern kernel currently. More kernels will be added to the torch
module of MuyGPs in future releases.

54 Chapter 1. Citation

MuyGPyS, Release 0.6.6

PyTorch does not currently support the Bessel function required to compute the Matern kernel for non-special
values of 𝜈, e.g. 1/2, 3/2, 5/2, and ∞. The MuyGPs layer allows the lengthscale parameter 𝜌 to be trained
(provided an initial value by the user) as well as the homoscedastic 𝜀 noise parameter.

The MuyGPs layer returns the posterior mean, posterior variance, and a vector of 𝜎2 indicating the scale param-
eter associated with the posterior variance of each dimension of the response.

𝜎2 is the only parameter assumed to be a training target by default, and is treated differently from all other
hyperparameters. All other training targets must be manually specified in the construction of a MuyGPs_layer
object.

Example

>>> from MuyGPyS.torch.muygps_layer import MuyGPs_layer
>>> muygps_model = MuyGPS(
... Matern(
... nu=ScalarHyperparameter("sample", (0.1, 1)),
... metric=IsotropicDistortion(
... l2,
... length_scale=ScalarHyperparameter(1.0)
...),
...),
... eps=HomoscedasticNoise(1e-5),
...)
>>> batch_indices = torch.arange(100,)
>>> batch_nn_indices = torch.arange(100,)
>>> batch_targets = torch.ones(100,)
>>> batch_nn_targets = torch.ones(100,)
>>> muygps_layer_object = MuyGPs_layer(
... muygps_model,
... batch_indices,
... batch_nn_indices,
... batch_targets,
... batch_nn_targets)

Parameters

• muygps_model (MuyGPS) – A MuyGPs object providing the Gaussian Process final layer.

• batch_indices – A torch.Tensor of shape (batch_count,) containing the indices of the
training data to be sampled for training.

• batch_nn_indices – A torch.Tensor of shape (batch_count, nn_count) containing
the indices of the k nearest neighbors of the batched training samples.

• batch_targets – A torch.Tensor of shape (batch_count, response_count) contain-
ing the responses corresponding to each batched training sample.

• batch_nn_targets – A torch.Tensor of shape (batch_count, nn_count,
response_count) containing the responses corresponding to the nearest neighbors
of each batched training sample.

• kwargs – Addition parameters to be passed to the kernel, possibly including additional hy-
perparameter dicts and a metric keyword.

1.5. torch 55

MuyGPyS, Release 0.6.6

forward(x)
Produce the output of a MuyGPs custom PyTorch layer.

Returns

• predictions – A torch.ndarray of shape (batch_count, response_count) whose rows
are the predicted response for each of the given batch feature.

• variances – A torch.ndarray of shape (batch_count,response_count) consisting of
the diagonal elements of the posterior variance.

Copyright 2021-2023 Lawrence Livermore National Security, LLC and other MuyGPyS Project Developers. See the
top-level COPYRIGHT file for details.

SPDX-License-Identifier: MIT

1.6 Univariate Regression Tutorial

This notebook walks through a simple regression workflow and explains the components of MuyGPyS.

[2]: import numpy as np

from utils import UnivariateSampler, print_results

from MuyGPyS.gp import MuyGPS
from MuyGPyS.gp.distortion import IsotropicDistortion, l2
from MuyGPyS.gp.hyperparameter import ScalarHyperparameter
from MuyGPyS.gp.kernels import Matern
from MuyGPyS.gp.noise import HomoscedasticNoise
from MuyGPyS.gp.tensors import make_predict_tensors
from MuyGPyS.neighbors import NN_Wrapper
from MuyGPyS.optimize.batch import sample_batch
from MuyGPyS.optimize.sigma_sq import muygps_sigma_sq_optim

We will set a random seed here for consistency when building docs. In practice we would not fix a seed.

[3]: np.random.seed(0)

1.6.1 Sampling a Curve from a Conventional GP

This notebook will use a simple one-dimensional curve sampled from a conventional Gaussian process. We will specify
the domain as a grid on a one-dimensional surface and divide the observations into train and test data.

Feel free to download the source notebook and experiment with different parameters.

First we specify the region of space, the data size, and the proportion of the train/test split.

[4]: lb = -10.0
ub = 10.0
data_count = 5001
train_step = 10

We will assume that the true data is produced with no noise, so we specify a very small noise prior for numerical
stability. This is an idealized experiment with effectively no instrument error.

56 Chapter 1. Citation

MuyGPyS, Release 0.6.6

[5]: nugget_noise = HomoscedasticNoise(1e-14)

We will perturb our simulated observations (the training data) with some i.i.d Gaussian measurement noise.

[6]: measurement_noise = HomoscedasticNoise(1e-5)

Finally, we will specify kernel hyperparameters nu and length_scale. The length_scale scales the distances that
are inputs to the kernel function, while the nu parameter determines how smooth the GP prior is. The larger nu grows,
the smoother sampled functions will become.

[7]: sim_length_scale = ScalarHyperparameter(1.0)
sim_nu = ScalarHyperparameter(2.0)

We use all of these parameters to define a Matérn kernel GP and a sampler for convenience. The UnivariateSampler
class is a convenience class for this tutorial, and is not a part of the library.

[8]: sampler = UnivariateSampler(
lb=lb,
ub=ub,
data_count=data_count,
train_step=train_step,
kernel=Matern(

nu=sim_nu,
metric=IsotropicDistortion(

l2,
length_scale=sim_length_scale,

),
),
eps=nugget_noise,
measurement_eps=measurement_noise,

)

Finally, we will sample a curve from this GP prior and visualize it. Note that we perturb the train responses (the values
that our model will actual receive) with Gaussian measurement noise. Further note that this is not especially fast, as
sampling from a conventional Gaussian process requires computing the Cholesky decomposition of a (data_count,
data_count) matrix.

[9]: train_features, test_features = sampler.features()

[10]: train_responses, test_responses = sampler.sample()

[11]: sampler.plot_sample()

1.6. Univariate Regression Tutorial 57

MuyGPyS, Release 0.6.6

We will now attempt to recover the response on the held-out test data by training a univariate MuyGPS model on the
perturbed training data.

1.6.2 Constructing Nearest Neighbor Lookups

NN_Wrapper is an api for tasking several KNN libraries with the construction of lookup indexes that empower fast
training and inference. The wrapper constructor expects the training features, the number of nearest neighbors, and
a method string specifying which algorithm to use, as well as any additional kwargs used by the methods. Currently
supported implementations include exact KNN using sklearn (“exact”) and approximate KNN using hnsw (“hnsw”,
requires installing MuyGPyS using the hnswlib extras flag).

Here we construct an exact KNN data example with k = 30

[12]: nn_count = 30
nbrs_lookup = NN_Wrapper(train_features, nn_count, nn_method="exact", algorithm="ball_
→˓tree")

This nbrs_lookup index is then usable to find the nearest neighbors of queries in the training data.

58 Chapter 1. Citation

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html
https://github.com/nmslib/hnswlib

MuyGPyS, Release 0.6.6

1.6.3 Sampling Batches of Data

MuyGPyS includes convenience functions for sampling batches of data from existing datasets. These batches are re-
turned in the form of row indices, both of the sampled data as well as their nearest neighbors.

Here we sample a random batch of train_count elements. This results in using all of the train data for training. We
only do that in this case because this example uses a relatively small amount of data. In practice, we would instead set
batch_count to a resaonable number. In practice we find reasonable values to be in the range of 500-2000.

[13]: batch_count = sampler.train_count
batch_indices, batch_nn_indices = sample_batch(

nbrs_lookup, batch_count, sampler.train_count
)

These indices and nn_indices arrays are the basic operating blocks of MuyGPyS linear algebraic inference.
The elements of indices.shape == (batch_count,) lists all of the row indices into train_features and
train_responses corresponding to the sampled data. The rows of nn_indices.shape == (batch_count,
nn_count) list the row indices into train_features and train_responses corresponding to the nearest neigh-
bors of the sampled data.

While the user need not use the MuyGPyS.optimize.batch sampling tools to construct these data, they will need to
construct similar indices into their data in order to use MuyGPyS.

1.6.4 Setting and Optimizing Hyperparameters

One initializes a MuyGPS object by indicating the kernel, as well as optionally specifying hyperparameters.

Consider the following example, which constructs a MuyGPs object with a Matérn kernel. The MuyGPS object expects
a kernel function object and an eps noise parameter. The Matern object expects a distance function object and a nu
smoothness parameter. We use an isotropic distance, so IsotropicDistortion expects a string indicating the metric
to use (l2 distance in this case) and a length scale parameter.

Hyperparameters can be optionally given a lower and upper optimization bound tuple on creation. If "bounds" is set,
one can also set the hyperparameter value with the arguments "sample" and "log_sample" to generate a uniform or
log uniform sample, respectively. Hyperparameters without optimization bounds will remain fixed during optimization.

In this experiment, we make the simplifying assumptions that we know the true length_scale and
measurement_noise, and reuse the parameters used to create the sampler. We will try to learn the nu smoothness
parameter.

[14]: exp_nu = ScalarHyperparameter("log_sample", (0.1, 5.0))
muygps = MuyGPS(

kernel=Matern(
nu=exp_nu,
metric=IsotropicDistortion(

l2,
length_scale=sim_length_scale,

),
),
eps=measurement_noise,

)

There is one additionally common hyperparameter, the sigma_sq scale parameter, that is treated differently than the
others. sigma_sq cannot be directly set by the user, and always initializes to the value "unlearned". We will show
how to train sigma_sq below. All hyperparameters other than sigma_sq are assumed to be fixed unless otherwise
specified.

1.6. Univariate Regression Tutorial 59

MuyGPyS, Release 0.6.6

MuyGPyS depends upon linear operations on specially-constructed tensors in order to efficiently estimate GP realiza-
tions. Constructing these tensors depends upon the nearest neighbor index matrices that we described above. We can
construct a distance tensor coalescing all of the square pairwise distance matrices of the nearest neighbors of a batch
of points.

This snippet constructs a matrix of shape (batch_count, nn_count, response_count) coalescing all of the pair-
wise difference vectors between the same batch of points and their nearest neighbors.

[15]: from MuyGPyS.gp.tensors import crosswise_tensor
batch_crosswise_diffs = crosswise_tensor(

train_features,
train_features,
batch_indices,
batch_nn_indices,

)

We can similarly construct a difference tensor of shape (batch_count, nn_count, nn_count,
response_count) containing the pairwise differences of each response dimension of the nearest neighbor sets
of each sampled batch element.

[16]: from MuyGPyS.gp.tensors import pairwise_tensor
pairwise_diffs = pairwise_tensor(

train_features, batch_nn_indices
)

The MuyGPS object we created earlier allows us to easily realize corresponding kernel tensors by way of its kernel
function.

[17]: Kcross = muygps.kernel(batch_crosswise_diffs)
K = muygps.kernel(pairwise_diffs)

In order to perform Gaussian process regression, we must utilize these kernel tensors in conjunction with their associ-
ated known responses. We can construct these matrices using the index matrices we derived earlier.

[18]: batch_targets = train_responses[batch_indices, :]
batch_nn_targets = train_responses[batch_nn_indices, :]

Since we often must realize batch_targets and batch_nn_targets in close proximity to
batch_crosswise_diffs and batch_pairwise_diffs, the library includes a convenience function
`make_train_tensors() <../MuyGPyS/gp/tensors.rst>`__ that bundles these operations.

[19]: from MuyGPyS.gp.tensors import make_train_tensors
(

batch_crosswise_diffs,
batch_pairwise_diffs,
batch_targets,
batch_nn_targets,

) = make_train_tensors(
batch_indices,
batch_nn_indices,
train_features,
train_responses,

)

We supply a convenient leave-one-out cross-validation utility (`optimize_from_tensors() <../MuyG-
PyS/gp/optimize.rst>`__) that utilizes these tensors to repeatedly realize kernel tensors during optimization.

60 Chapter 1. Citation

MuyGPyS, Release 0.6.6

This optimization loop wraps a few different batch optimization methods: * `scipy.optimize.minimize <https:
//docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.minimize.html>`__ - specifically uses the “L-
BFGS-B” algorithm. * `bayes_opt.BayesianOptimization <https://github.com/fmfn/BayesianOptimization>`__
- the optimize_from_tensors wrapper only supports batch mode; examine the internals of the function if you
would like to use Bayesian optimization interactively.

If we want to use scipy-style optimization, we pass the opt_method="scipy" kwarg. While it is possible to
pass additional kwargs based upon `scipy.optimize.minimize <https://docs.scipy.org/doc/scipy-0.18.1/reference/
generated/scipy.optimize.minimize.html>`__, it is presently unlikely that a user would want to do so.

[20]: from MuyGPyS.optimize import optimize_from_tensors
muygps_scipy = optimize_from_tensors(

muygps,
batch_targets,
batch_nn_targets,
batch_crosswise_diffs,
batch_pairwise_diffs,
loss_method="mse",
obj_method="loo_crossval",
opt_method="scipy",
verbose=True,

)

parameters to be optimized: ['nu']
bounds: [[0.1 5.]]
initial x0: [0.49355858]
optimizer results:

fun: 8.097174300634541e-06
hess_inv: <1x1 LbfgsInvHessProduct with dtype=float64>

jac: array([-6.46382569e-06])
message: 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'

nfev: 16
nit: 7
njev: 8

status: 0
success: True

x: array([1.29135])

Similarly, we can use bayesian-optimization style optimization by passing the opt_method="bayesian" (alter-
nately "bayes" or "bayes_opt") kwarg. There are several additional parameters that a user might want to set. In
particular, init_points (the number of “exploration” objective function evaluations to perform) and n_iter (the
number of “exploitation” objective function evaluations to perform) are of use to most users. This example also sets
random_state for consistency. See the documentation of BayesianOptimization for more examples.

[21]: muygps_bayes = optimize_from_tensors(
muygps,
batch_targets,
batch_nn_targets,
batch_crosswise_diffs,
batch_pairwise_diffs,
loss_method="mse",
obj_method="loo_crossval",
opt_method="bayesian",
verbose=True,
random_state=1,

(continues on next page)

1.6. Univariate Regression Tutorial 61

https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.minimize.html
https://github.com/fmfn/BayesianOptimization
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.minimize.html
https://github.com/fmfn/BayesianOptimization

MuyGPyS, Release 0.6.6

(continued from previous page)

init_points=5,
n_iter=20,

)

parameters to be optimized: ['nu']
bounds: [[0.1 5.]]
initial x0: [0.49355858]
| iter | target | nu |

1	-6.797e-0	0.4936
2	-1.027e-0	2.143
3	-8.11e-05	3.63
4	-0.004408	0.1006
5	-7.124e-0	1.581
6	-1.826e-0	0.8191
7	-3.023e-0	0.6683
8	-2.004e-0	2.616
9	-7.106e-0	1.611
10	-7.109e-0	1.604
11	-0.000157	4.303
12	-0.000242	5.0
13	-4.259e-0	3.122
14	-9.146e-0	1.169
15	-0.000116	3.964
16	-0.000200	4.654
17	-2.948e-0	2.869
18	-5.975e-0	3.378
19	-1.4e-05	2.372
20	-3.023e-0	0.6682
21	-7.951e-0	1.911
22	-1.184e-0	1.001
23	-7.761e-0	1.351
24	-9.814e-0	3.798
25	-0.000179	4.477
26	-0.000223	4.838
=====================================

[22]: print(f"scipy.optimize.opt.minimize finds that the optimimal `nu` is {muygps_scipy.
→˓kernel.nu()}")
print(f"BayesianOptimization finds that the optimimal `nu` is {muygps_bayes.kernel.nu()}
→˓")

scipy.optimize.opt.minimize finds that the optimimal `nu` is 1.291349997803733
BayesianOptimization finds that the optimimal `nu` is 1.6109672778498811

Note here that the returned value for nu might be different from the nu used by the conventional GP.

As it is a variance scaling parameter that is insensitive to prediction-based optimization, we separately optimize
sigma_sq. In this case, we invoke muygps_sigma_sq_optim(), which approximates sigma_sq based upon the mean
of the closed-form sigma_sq solutions associated with each of its batched nearest neighbor sets. Note that this method
is sensitive to several factors, include batch_count, nn_count, and the overall size of the dataset, tending to perform
better as each of these factors increases.

This is usually performed after optimizing other hyperparameters.

62 Chapter 1. Citation

MuyGPyS, Release 0.6.6

[23]: scipy_K = muygps_scipy.kernel(batch_pairwise_diffs)
muygps_scipy = muygps_sigma_sq_optim(muygps_scipy, batch_pairwise_diffs, batch_nn_
→˓targets, sigma_method="analytic")
bayes_K = muygps_bayes.kernel(batch_pairwise_diffs)
muygps_bayes = muygps_sigma_sq_optim(muygps_bayes, batch_pairwise_diffs, batch_nn_
→˓targets, sigma_method="analytic")
print(f"scipy-optimized sigma_sq: {muygps_scipy.sigma_sq()}")
print(f"BayesianOptimization-optimized sigma_sq: {muygps_bayes.sigma_sq()}")

scipy-optimized sigma_sq: [0.16176324]
BayesianOptimization-optimized sigma_sq: [0.26936798]

1.6.5 Inference

With set (or learned) hyperparameters, we are able to use the muygps object to predict the response of test data. Several
workflows are supported.

See below a simple regression workflow, using the data structures built up in this example. This workflow uses the
compact tensor-making function make_predict_tensors() to succinctly create tensors defining the pairwise_dists
among each nearest neighbor set, the crosswise_dists between each test point and its nearest neighbor set, and the
nn_targets or responses of the nearest neighbors in each set. We then create the Kcross cross-covariance matrix and
K covariance tensor and pass them to MuyGPS.posterior_mean() and MuyGPS.posterior_variance() in order to obtain
our predictions.

First, we find the indices of the nearest neighbors of all of the test elements and save the results in test_nn_indices.

[24]: test_count, _ = test_features.shape
indices = np.arange(test_count)
test_nn_indices, _ = nbrs_lookup.get_nns(test_features)

We then use nn_indices to make difference and target tensors for the test data. These tensors are similar to those used
for batch optimization, except that we do not assume that we know the targets of the

[25]: (
test_crosswise_diffs,
test_pairwise_diffs,
test_nn_targets,

) = make_predict_tensors(
indices,
test_nn_indices,
test_features,
train_features,
train_responses,

)

We create the kernel tensors for both the scipy and bayes-opt optimized models.

[26]: scipy_Kcross = muygps_scipy.kernel(test_crosswise_diffs)
scipy_K = muygps_scipy.kernel(test_pairwise_diffs)

bayes_Kcross = muygps_bayes.kernel(test_crosswise_diffs)
bayes_K = muygps_bayes.kernel(test_pairwise_diffs)

1.6. Univariate Regression Tutorial 63

MuyGPyS, Release 0.6.6

Finally, we use the MuyGPS.posterior_mean() and MuyGPS.posterior_variance() functions to find the poste-
rior means and variances associated with each training prediction for each model.

[27]: scipy_predictions = muygps_scipy.posterior_mean(
scipy_K, scipy_Kcross, test_nn_targets

)
scipy_variances = muygps_scipy.posterior_variance(

scipy_K, scipy_Kcross
)

bayes_predictions = muygps_bayes.posterior_mean(
bayes_K, bayes_Kcross, test_nn_targets

)
bayes_variances = muygps_bayes.posterior_variance(

bayes_K, bayes_Kcross
)

We here evaluate our prediction performance in terms of RMSE, mean diagonal posterior variance, the mean 95%
confidence interval size, and the coverage, which ideally should be near 95%.

The 95% confidence interval are straightforward to compute.

[28]: scipy_confidence_intervals = np.sqrt(scipy_variances) * 1.96
bayes_confidence_intervals = np.sqrt(bayes_variances) * 1.96

We compute confidence intervals as the proportion of posterior means that differ from the true response by no more
than the confidence interval.

[29]: scipy_coverage = (
np.count_nonzero(

np.abs(test_responses - scipy_predictions) < scipy_confidence_intervals
) / test_count

)
bayes_coverage = (

np.count_nonzero(
np.abs(test_responses - bayes_predictions) < bayes_confidence_intervals

) / test_count
)

Finally, we print the results using some throwaway convenience functions.

[30]: print_results("scipy", test_responses, scipy_predictions, scipy_variances, scipy_
→˓confidence_intervals, scipy_coverage)
print_results("bayes", test_responses, bayes_predictions, bayes_variances, bayes_
→˓confidence_intervals, bayes_coverage)

scipy results:
RMSE: 0.0005523046981276159
mean diagonal variance: 7.2036827724115715e-06
mean confidence interval size: 0.01024846652495427
coverage: 1.0

bayes results:
RMSE: 0.0006262325772056444
mean diagonal variance: 3.135317993317895e-06
mean confidence interval size: 0.006921679511057385

(continues on next page)

64 Chapter 1. Citation

MuyGPyS, Release 0.6.6

(continued from previous page)

coverage: 1.0

These regression examples return predictions (posterior means) and variances for each element of the test dataset. These
variances are in the form of diagonal and independent variances that encode the uncertaintainty of the model’s predic-
tions at each test point. To scale the variances, they should be multiplied by the trained sigma_sq scaling parameters,
of which there will be one scalar associated with each dimension of the response. The kwarg apply_sigma_sq=True
indicates that this scaling will be performed automatically. This is the default behavior, but will be skipped if sigma_sq
== "unlearned".

For a univariate resonse whose variance is obtained with apply_sigma_sq=False, the scaled predicted variance is
equivalent to multiplying the predicted variances by muygps.sigma_sq().

We can also plot our responses and evaluate their performance. We plot below the predicted and true curves, as well
as the 95% confidence interval. We plot a smaller subset of the data in the lower curve in order to better scrutinize the
95% confidence interval.

[31]: sampler.plot_results(scipy_predictions, scipy_confidence_intervals, bayes_predictions,␣
→˓bayes_confidence_intervals)

1.6. Univariate Regression Tutorial 65

MuyGPyS, Release 0.6.6

[]:

Copyright 2021-2023 Lawrence Livermore National Security, LLC and other MuyGPyS Project Developers. See the
top-level COPYRIGHT file for details.

SPDX-License-Identifier: MIT

66 Chapter 1. Citation

MuyGPyS, Release 0.6.6

1.7 Deep Kernels with MuyGPs in PyTorch Tutorial

In this tutorial, we outline how to construct a simple deep kernel model using the PyTorch implementation of MuyGPs.

We use the MNIST classification problem as a benchmark. We will use the deep kernel MuyGPs model to classify
images of handwritten digits between 0 and 9. In order to reduce the runtime of the training loop, we will use a fully-
connected architecture, meaning we will have to vectorize each image prior to training. We download the training and
testing data using the torchvision.datasets API.

First, we will import necessary dependencies. We also force MuyGPyS to use the "torch" backend. This can also be
done by setting the MUYGPYS_BACKEND environment variable to "torch".

[2]: %env MUYGPYS_BACKEND=torch
%env MUYGPYS_FTYPE=32

env: MUYGPYS_BACKEND=torch
env: MUYGPYS_FTYPE=32

[3]: from MuyGPyS.gp.distortion import l2

import numpy as np
import torch
import torchvision
import os
from torch.nn.functional import one_hot
root = './data'
if not os.path.exists(root):

os.mkdir(root)

We use torch’s utilities to download MNIST and transform it into an appropriately normalized tensor.

[4]: trans = torchvision.transforms.Compose(
[

torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5,),(1.0,)),

]
)
train_set = torchvision.datasets.MNIST(

root=root, train=True, transform=trans, download=True
)
test_set = torchvision.datasets.MNIST(

root=root, train=False, transform=trans, download=True
)

MNIST is a popular benchmark dataset of hand-written digits, 0-9. Each digit is a 28x28 pixel image, with 784 total
pixel features. In the interest of reducing runtime, we will use vectorized images as our features in this dataset.

[5]: num_classes = 10
num_train_samples = 60000
num_test_samples = 10000
num_pixels = 784

We will collect 60,000 training samples and 10,000 test samples. We vectorize the images and one-hot encode the class
labels.

1.7. Deep Kernels with MuyGPs in PyTorch Tutorial 67

MuyGPyS, Release 0.6.6

[6]: train_features = torch.zeros((num_train_samples,num_pixels))
train_responses = torch.zeros((num_train_samples,num_classes))

for i in range(num_train_samples):
train_features[i,:] = train_set[i][0].flatten()
train_responses[i,:] = one_hot(

torch.tensor(train_set[i][1]).to(torch.int64),
num_classes=num_classes,

)

test_features = torch.zeros((num_test_samples,num_pixels))
test_responses = torch.zeros((num_test_samples,num_classes))

for i in range(num_test_samples):
test_features[i,:] = test_set[i][0].flatten()
test_responses[i,:] = one_hot(

torch.tensor(test_set[i][1]).to(torch.int64),
num_classes=num_classes,

)

We set up our nearest neighbor lookup structure using the NN_Wrapper data structure in MuyGPs. We then define our
batch and construct tensor containing the features and targets of the batched elements and their 30 nearest neighbors.
We choose an algorithm that will return the exact nearest neighbors. We set a random seed for reproducability.

[7]: from torch import nn
import random
from torch.optim.lr_scheduler import ExponentialLR
torch.autograd.set_detect_anomaly(True)
np.random.seed(0)
test_count, _ = test_features.shape
train_count, _ = train_features.shape

from MuyGPyS.neighbors import NN_Wrapper
nn_count = 30
nbrs_lookup = NN_Wrapper(train_features, nn_count, nn_method="exact")

We sample a training batch of 500 elements and record their indices and those of their nearest neighbors.

[8]:
#We will make use of batching in our hyperparameter training
from MuyGPyS.optimize.batch import sample_batch
batch_count = 500
batch_indices, batch_nn_indices = sample_batch(

nbrs_lookup, batch_count, train_count
)

batch_features = train_features[batch_indices,:]
batch_targets = train_responses[batch_indices, :]
batch_nn_targets = train_responses[batch_nn_indices, :]

if torch.cuda.is_available():
train_features = train_features.cuda()

(continues on next page)

68 Chapter 1. Citation

MuyGPyS, Release 0.6.6

(continued from previous page)

train_responses = train_responses.cuda()
test_features = test_features.cuda()
test_responses = test_responses.cuda()

We now define a stochastic variational deep kernel MuyGPs class. This class composes a dense neural network embed-
ding with a MuyGPyS.torch.muygps_layer Gaussian process layer. Presently, this layer only supports the Matérn
kernel with special values of the nu or smoothness parameter set to 0.5, 1.5, 2.5, or ∞. The smoothness values are
limited because torch does not implement modified bessel functions of the second kind. Future versions of the library
will also support other kernel types.

[9]: from MuyGPyS.torch import MuyGPs_layer
print('Building Stochastic Variational Deep Kernel MuyGPs model')

class SVDKMuyGPs(nn.Module):
def __init__(

self,
muygps_model,
batch_indices,
batch_nn_indices,
batch_targets,
batch_nn_targets,

):
super().__init__()
self.embedding = nn.Sequential(

nn.Linear(784,400),
nn.ReLU(),
nn.Linear(400,200),
nn.ReLU(),
nn.Linear(200,100),

)
self.batch_indices = batch_indices
self.batch_nn_indices = batch_nn_indices
self.batch_targets = batch_targets
self.batch_nn_targets = batch_nn_targets
self.GP_layer = MuyGPs_layer(

muygps_model,
batch_indices,
batch_nn_indices,
batch_targets,
batch_nn_targets,

)

def forward(self,x):
predictions = self.embedding(x)
predictions, variances = self.GP_layer(predictions)
return predictions, variances

Building Stochastic Variational Deep Kernel MuyGPs model

1.7. Deep Kernels with MuyGPs in PyTorch Tutorial 69

MuyGPyS, Release 0.6.6

1.7.1 Training a Deep Kernel MuyGPs Model

We instantiate a SVDKMuyGPs model with initial guess hyperparameters. We fix a Matérn kernel smoothness parameter
of 0.5 and a Guassian homoscedastic noise prior variance of 1e-6.

[10]: from MuyGPyS.gp import MuyGPS
from MuyGPyS.gp.noise import HomoscedasticNoise
from MuyGPyS.gp.hyperparameter import ScalarHyperparameter
from MuyGPyS.gp.kernels import Matern
from MuyGPyS.gp.distortion import IsotropicDistortion

model_nu = 0.5
model_length_scale = 1.0
measurement_eps = 1e-6

muygps_model = MuyGPS(
kernel=Matern(

nu=ScalarHyperparameter(model_nu),
metric=IsotropicDistortion(l2,

length_scale=ScalarHyperparameter(model_length_scale)
),

),
eps=HomoscedasticNoise(measurement_eps),

)

model = SVDKMuyGPs(
muygps_model = muygps_model,
batch_indices=batch_indices,
batch_nn_indices=batch_nn_indices,
batch_targets=batch_targets,
batch_nn_targets=batch_nn_targets,

)
if torch.cuda.is_available():

model = model.cuda()

We use the Adam optimizer over 10 training iterations, with an initial learning rate of 1e-2 and decay of 0.97.

[11]: training_iterations = 10
optimizer = torch.optim.Adam(

[{'params': model.parameters()}], lr=1e-2
)
scheduler = ExponentialLR(optimizer, gamma=0.97)

We will use cross-entropy loss, as it is commonly performant for classification problems. Other losses are available.

[12]: ce_loss = nn.CrossEntropyLoss()
mse_loss = nn.MSELoss()
l1_loss = nn.L1Loss()
bce_loss = nn.BCELoss()

We construct a standard PyTorch training loop function.

70 Chapter 1. Citation

MuyGPyS, Release 0.6.6

[13]: def train(nbrs_lookup):
for i in range(training_iterations):

model.train()
optimizer.zero_grad()
predictions,variances = model(train_features)
loss = ce_loss(predictions,batch_targets)
loss.backward()
optimizer.step()
scheduler.step()
if np.mod(i,1) == 0:

print(f"Iter {i + 1}/{training_iterations} - Loss: {loss.item()}")
model.eval()
nbrs_lookup = NN_Wrapper(

model.embedding(train_features).detach().numpy(),
nn_count, nn_method="exact"

)
batch_nn_indices,_ = nbrs_lookup._get_nns(

model.embedding(batch_features).detach().numpy(),
nn_count=nn_count,

)
batch_nn_targets = train_responses[batch_nn_indices, :]
model.batch_nn_indices = batch_nn_indices
model.batch_nn_targets = batch_nn_targets

torch.cuda.empty_cache()
nbrs_lookup = NN_Wrapper(

model.embedding(train_features).detach().numpy(),
nn_count,
nn_method="exact",

)
batch_nn_indices,_ = nbrs_lookup._get_nns(

model.embedding(batch_features).detach().numpy(),
nn_count=nn_count,

)
batch_nn_targets = train_responses[batch_nn_indices, :]
model.batch_nn_indices = batch_nn_indices
model.batch_nn_targets = batch_nn_targets
return nbrs_lookup, model

Finally, we execute the training function and evaluate the trained model

[14]: nbrs_lookup, model_trained = train(nbrs_lookup)
model_trained.eval()

Iter 1/10 - Loss: 1.5154695510864258
Iter 2/10 - Loss: 1.4770054817199707
Iter 3/10 - Loss: 1.441899299621582
Iter 4/10 - Loss: 1.4263132810592651
Iter 5/10 - Loss: 1.4199936389923096
Iter 6/10 - Loss: 1.40185546875
Iter 7/10 - Loss: 1.3923559188842773
Iter 8/10 - Loss: 1.380581259727478
Iter 9/10 - Loss: 1.372625470161438
Iter 10/10 - Loss: 1.3624086380004883

1.7. Deep Kernels with MuyGPs in PyTorch Tutorial 71

MuyGPyS, Release 0.6.6

[14]: SVDKMuyGPs(
(embedding): Sequential(
(0): Linear(in_features=784, out_features=400, bias=True)
(1): ReLU()
(2): Linear(in_features=400, out_features=200, bias=True)
(3): ReLU()
(4): Linear(in_features=200, out_features=100, bias=True)

)
(GP_layer): MuyGPs_layer()

)

We then compute and report the performance of the predicted test responses using this trained model.

[15]: from MuyGPyS.examples.muygps_torch import predict_model
predictions, variances = predict_model(

model=model_trained,
test_features=test_features,
train_features=train_features,
train_responses=train_responses,
nbrs_lookup=nbrs_lookup,
nn_count=nn_count,

)
print("MNIST Prediction Accuracy Using Low-Level Torch Implementation:")
print(

(
torch.sum(

torch.argmax(predictions,dim=1) == torch.argmax(test_responses,dim=1)
) / 10000

).numpy()
)

MNIST Prediction Accuracy Using Low-Level Torch Implementation:
0.9398

1.7.2 Training a Deep Kernel MuyGPs Model Using Our Example API Function

Similar to our one-line regression tutorial API, we support a one-line Deep MuyGPs regression API. This snippet
performs the same work as above with a singular function execution.

[16]: #Import high-level API function train_deep_kernel_muygps
from MuyGPyS.examples.muygps_torch import train_deep_kernel_muygps

model_nu = 0.5
model_length_scale = 1.0
measurement_eps = 1e-6

muygps_model = MuyGPS(
kernel=Matern(

nu=ScalarHyperparameter(model_nu),
metric=IsotropicDistortion(l2,

length_scale=ScalarHyperparameter(model_length_scale)
),

(continues on next page)

72 Chapter 1. Citation

MuyGPyS, Release 0.6.6

(continued from previous page)

),
eps=HomoscedasticNoise(measurement_eps),

)

#Use leave-one-out-likelihood loss function to train model
model = SVDKMuyGPs(

muygps_model=muygps_model,
batch_indices=batch_indices,
batch_nn_indices=batch_nn_indices,
batch_targets=batch_targets,
batch_nn_targets=batch_nn_targets)

nbrs_lookup, model_trained = train_deep_kernel_muygps(
model=model,
train_features=train_features,
train_responses=train_responses,
batch_indices=batch_indices,
nbrs_lookup=nbrs_lookup,
training_iterations=10,
optimizer_method=torch.optim.Adam,
learning_rate=1e-2,
scheduler_decay=0.97,
loss_function="ce",
update_frequency=1,
verbose=True,

)

model_trained.eval()

Iter 1/10 - Loss: 1.5164387226
Iter 2/10 - Loss: 1.4815564156
Iter 3/10 - Loss: 1.4386521578
Iter 4/10 - Loss: 1.4218910933
Iter 5/10 - Loss: 1.4173457623
Iter 6/10 - Loss: 1.4027299881
Iter 7/10 - Loss: 1.3904489279
Iter 8/10 - Loss: 1.3764212132
Iter 9/10 - Loss: 1.3704509735
Iter 10/10 - Loss: 1.3603465557

[16]: SVDKMuyGPs(
(embedding): Sequential(
(0): Linear(in_features=784, out_features=400, bias=True)
(1): ReLU()
(2): Linear(in_features=400, out_features=200, bias=True)
(3): ReLU()
(4): Linear(in_features=200, out_features=100, bias=True)

)
(GP_layer): MuyGPs_layer()

)

We similarly report our prediction performance on the test responses using this trained model.

1.7. Deep Kernels with MuyGPs in PyTorch Tutorial 73

MuyGPyS, Release 0.6.6

[17]: from MuyGPyS.examples.muygps_torch import predict_model
predictions,variances = predict_model(

model=model_trained,
test_features=test_features,
train_features=train_features,
train_responses=train_responses,
nbrs_lookup=nbrs_lookup,
nn_count=nn_count,

)

print("MNIST Prediction Accuracy Using High-Level Training API:")
print(

(
torch.sum(

torch.argmax(predictions,dim=1) == torch.argmax(test_responses,dim=1)
) / 10000

).numpy()
)

MNIST Prediction Accuracy Using High-Level Training API:
0.9348

We note that this is quite mediocre performance on MNIST. In the interest of reducing notebook runtime we have used a
simple fully-connected neural network model to construct the Gaussian process kernel. To achieve results closer to the
state-of-the-art (near 100% accuracy), we recommend using more complex architectures which integrate convolutional
kernels into the model.

Copyright 2021-2023 Lawrence Livermore National Security, LLC and other MuyGPyS Project Developers. See the
top-level COPYRIGHT file for details.

SPDX-License-Identifier: MIT

1.8 Fast Posterior Mean Tutorial

This notebook walks through the fast posterior mean workflow presented in Fast Gaussian Process Posterior Mean
Prediction via Local Cross Validation and Precomputation (Dunton et. al 2022) and explains the relevant components
of MuyGPyS.

The cell below uses the same code as that found in univariate_regression_tutorial.ipynb. This includes generating the
synthetic data from a GP and training two MuyGPs models to fit the data using Bayesian optimization.

[2]: import matplotlib.pyplot as plt
import numpy as np

from utils import UnivariateSampler

from MuyGPyS._test.gp import benchmark_sample, BenchmarkGP
from MuyGPyS.gp.distortion import IsotropicDistortion, NullDistortion, l2
from MuyGPyS.gp.hyperparameter import ScalarHyperparameter
from MuyGPyS.gp.kernels import Matern
from MuyGPyS.gp.noise import HomoscedasticNoise

np.random.seed(0)
(continues on next page)

74 Chapter 1. Citation

MuyGPyS, Release 0.6.6

(continued from previous page)

lb = -10.0
ub = 10.0
data_count = 5001
train_step = 10
nugget_var = 1e-14
fixed_length_scale = 1.0
measurement_eps = 1e-3
sampler = UnivariateSampler(

lb=lb,
ub=ub,
data_count=data_count,
train_step=train_step,
kernel=Matern(

nu=ScalarHyperparameter(0.5),
metric=IsotropicDistortion(

l2,
length_scale=ScalarHyperparameter(fixed_length_scale),

),
),
eps=HomoscedasticNoise(nugget_var),
measurement_eps=HomoscedasticNoise(measurement_eps),

)
train_features, test_features = sampler.features()
test_count, _ = test_features.shape
train_count, _ = train_features.shape

train_responses, test_responses = sampler.sample()

sampler.plot_sample()

from MuyGPyS.neighbors import NN_Wrapper
nn_count = 10
nbrs_lookup = NN_Wrapper(train_features, nn_count, nn_method="exact",algorithm="ball_tree
→˓")

from MuyGPyS.optimize.batch import sample_batch
batch_count = train_count
batch_indices, batch_nn_indices = sample_batch(

nbrs_lookup, batch_count, train_count
)

from MuyGPyS.gp import MuyGPS
muygps = MuyGPS(

kernel=Matern(
nu=ScalarHyperparameter(0.5),
metric=IsotropicDistortion(

metric=l2,
length_scale=ScalarHyperparameter(

"log_sample", (0.1, 5.0))
),

),

(continues on next page)

1.8. Fast Posterior Mean Tutorial 75

MuyGPyS, Release 0.6.6

(continued from previous page)

eps=HomoscedasticNoise(measurement_eps),
)

from MuyGPyS.gp.tensors import crosswise_tensor
batch_crosswise_diffs = crosswise_tensor(

train_features,
train_features,
batch_indices,
batch_nn_indices,

)

from MuyGPyS.gp.tensors import pairwise_tensor
pairwise_diffs = pairwise_tensor(

train_features, batch_nn_indices
)

Kcross = muygps.kernel(batch_crosswise_diffs)
K = muygps.kernel(pairwise_diffs)

batch_targets = train_responses[batch_indices, :]
batch_nn_targets = train_responses[batch_nn_indices, :]

from MuyGPyS.gp.tensors import make_train_tensors
(

batch_crosswise_diffs,
batch_pairwise_diffs,
batch_targets,
batch_nn_targets,

) = make_train_tensors(
batch_indices,
batch_nn_indices,
train_features,
train_responses,

)

from MuyGPyS.optimize import optimize_from_tensors

muygps = optimize_from_tensors(
muygps,
batch_targets,
batch_nn_targets,
batch_crosswise_diffs,
batch_pairwise_diffs,
loss_method="lool",
obj_method="loo_crossval",
opt_method="bayesian",
verbose=False,
random_state=1,
init_points=5,
n_iter=2,

)

(continues on next page)

76 Chapter 1. Citation

MuyGPyS, Release 0.6.6

(continued from previous page)

from MuyGPyS.optimize.sigma_sq import muygps_sigma_sq_optim

K = muygps.kernel(batch_pairwise_diffs)
muygps = muygps_sigma_sq_optim(muygps, batch_pairwise_diffs, batch_nn_targets, sigma_
→˓method="analytic")

1.8.1 Fast Prediction

With set (or learned) hyperparameters, we are able to use the muygps object for fast prediction capability. Several
workflows are supported.

See below a fast posterior mean workflow, using the data structures built up in this example. This workflow
uses the compact tensor-making function make_fast_predict_tensors() to succinctly create tensors defining the
pairwise_diffs among each nearest neighbor and the train_nn_targets_fast or responses of the nearest neigh-
bors in each set. We then create theK covariance tensor and form the precomputed coefficients matrix. We then pass
the precomputed coefficients matrix, the updated nn_indices matrix, and the closest neighbor of each test point to
MuyGPS.fast_posterior_mean() in order to obtain our predictions.

[3]: from MuyGPyS.gp.tensors import make_fast_predict_tensors, fast_nn_update, make_predict_
→˓tensors
nn_indices,_ = nbrs_lookup.get_nns(train_features)
nn_indices = nn_indices.astype(int)

1.8. Fast Posterior Mean Tutorial 77

MuyGPyS, Release 0.6.6

[4]: from MuyGPyS.gp.tensors import make_predict_tensors
nn_indices = fast_nn_update(nn_indices)

#find the closest training point to each test point, and its corresponding nearest␣
→˓neighbor set

test_neighbors, _ = nbrs_lookup.get_nns(test_features)
closest_neighbor = test_neighbors[:, 0]
closest_set = nn_indices[closest_neighbor, :].astype(int)

#make crosswise distances tensor for prediction
(

crosswise_diffs,
pairwise_diffs,
nn_targets,

) = make_predict_tensors(
np.arange(test_count),
closest_set,
test_features,
train_features,
train_responses,

)

K = muygps.kernel(pairwise_diffs)

precomputed_coefficients_matrix = muygps.fast_coefficients(
K,
nn_targets)

#perform GP regression

Kcross = muygps.kernel(crosswise_diffs)
fast_predictions = muygps.fast_posterior_mean(

Kcross,
precomputed_coefficients_matrix[closest_neighbor,:,:])

1.8.2 Regular Prediction

With set (or learned) hyperparameters, we are able to use the muygps object to predict the response of test data. Several
workflows are supported.

See below a simple posterior mean workflow, using the data structures built up in this example. This workflow uses the
compact tensor-making function make_predict_tensors() to succinctly create tensors defining the pairwise_diffs
among each nearest neighbor set, the crosswise_diffs between each test point and its nearest neighbor set, and the
nn_targets or responses of the nearest neighbors in each set. We then create the Kcross cross-covariance matrix
and K covariance tensor and pass them to MuyGPS.posterior_mean() in order to obtain our predictions.

[5]: from MuyGPyS.gp.tensors import make_predict_tensors

make the indices
(continues on next page)

78 Chapter 1. Citation

MuyGPyS, Release 0.6.6

(continued from previous page)

test_count, _ = test_features.shape
indices = np.arange(test_count)
nn_indices, _ = nbrs_lookup.get_nns(test_features)

make difference and target tensors
(

crosswise_diffs,
pairwise_diffs,
nn_targets,

) = make_predict_tensors(
indices,
nn_indices,
test_features,
train_features,
train_responses,

)

Make the kernel
Kcross = muygps.kernel(crosswise_diffs)
K = muygps.kernel(pairwise_diffs)

perform Gaussian process regression

predictions = muygps.posterior_mean(
K, Kcross, nn_targets

)

1.8.3 Timing Experiment

We compare the prediction time of a regular posterior mean workflow to that of the fast posterior mean workflow. In
the regular posterior mean workflow we compute the sum of the time it takes to identify the nearest neighbors of the
test features, the time it takes to form the relevant kernel tensors, and the time to solve the posterior means. In the fast
posterior mean case, we compute the sum of the time it takes to identify the nearest neighbor of each test point, the
coefficient lookup in the precomputed coefficient matrix, and the dot product to form posterior means.

[6]: from MuyGPyS.optimize.loss import mse_fn
import timeit

test_count, _ = test_features.shape
indices = np.arange(test_count)

def timing_posterior_mean():
nn_indices, _ = nbrs_lookup.get_nns(test_features)
(

crosswise_diffs,
pairwise_diffs,
nn_targets,

) = make_predict_tensors(
(continues on next page)

1.8. Fast Posterior Mean Tutorial 79

MuyGPyS, Release 0.6.6

(continued from previous page)

indices,
nn_indices,
test_features,
train_features,
train_responses,

)

Kcross = muygps.kernel(crosswise_diffs)
K = muygps.kernel(pairwise_diffs)
predictions = muygps.posterior_mean(

K, Kcross, nn_targets
)

print(f"regular RMSE:")
print(f"\tRMSE: {np.sqrt(mse_fn(predictions, test_responses))}")
print("regular prediction time:")
%timeit timing_posterior_mean()

nn_indices = fast_nn_update(nn_indices)
def timing_fast_posterior_mean():

test_neighbors, _ = nbrs_lookup.get_nns(test_features)
closest_neighbor = test_neighbors[:, 0]
closest_set = nn_indices[closest_neighbor, :].astype(int)

#make crosswise distances tensor
(

crosswise_diffs,
pairwise_diffs,
nn_targets,

) = make_predict_tensors(
np.arange(test_count),
closest_set,
test_features,
train_features,
train_responses,

)

Kcross = muygps.kernel(crosswise_diffs)
fast_predictions = muygps.fast_posterior_mean(

Kcross,
precomputed_coefficients_matrix[closest_neighbor,:,:])

print(f"fast prediction RMSE:")
print(f"\tRMSE: {np.sqrt(mse_fn(fast_predictions, test_responses))}")
print("fast prediction time:")
%timeit timing_fast_posterior_mean()

(continues on next page)

80 Chapter 1. Citation

MuyGPyS, Release 0.6.6

(continued from previous page)

regular RMSE:
RMSE: 0.1206710068099257

regular prediction time:
64.4 ms ± 731 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
fast prediction RMSE:

RMSE: 1.658329619936535
fast prediction time:
14.7 ms ± 82.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

1.8.4 Results

We achieve roughly two orders of magnitude speedup using the fast prediction acceleration. The improvement is even
more dramatic when the methods are implemented in JAX.

1.9 References

1.9. References 81

MuyGPyS, Release 0.6.6

82 Chapter 1. Citation

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

83

MuyGPyS, Release 0.6.6

84 Chapter 2. Indices and tables

BIBLIOGRAPHY

[muyskens2021muygps] Muyskens, Amanda, Benjamin W. Priest, Imène Goumiri, and Michael Schneider. “MuyGPs:
Scalable Gaussian Process Hyperparameter Estimation Using Local Cross-Validation.” arXiv preprint
arXiV:2104.14581 (2021).

[muyskens2021star] Muyskens, Amanda L., Imène R. Goumiri, Benjamin W. Priest, Michael D. Schneider, Robert
E. Armstrong, Jason M. Bernstein, and Ryan Dana. “Star-Galaxy Image Separation with Computationally
Efficient Gaussian Process Classification.” arXiv preprint arXiv:2105.01106 (2021).

[dunton2022fast] Dunton, Alec M., Benjamin W. Priest, and Amanda Muyskens. “Fast Gaussian Process Poste-
rior Mean Prediction via Local Cross Validation and Precomputation.” arXiv preprint arXiv:2205.10879
(2022).

85

https://arxiv.org/abs/2104.14581
https://arxiv.org/abs/2105.01106
https://arxiv.org/abs/2205.10879

MuyGPyS, Release 0.6.6

86 Bibliography

PYTHON MODULE INDEX

m
MuyGPyS.examples.classify, 40
MuyGPyS.examples.fast_posterior_mean, 36
MuyGPyS.examples.muygps_torch, 50
MuyGPyS.examples.regress, 30
MuyGPyS.examples.two_class_classify_uq, 45
MuyGPyS.gp.distortion, 5
MuyGPyS.gp.kernels.kernel_fn, 10
MuyGPyS.gp.tensors, 5
MuyGPyS.neighbors, 3
MuyGPyS.optimize.batch, 19
MuyGPyS.optimize.chassis, 22
MuyGPyS.optimize.loss, 23
MuyGPyS.optimize.objective, 27
MuyGPyS.optimize.sigma_sq, 28
MuyGPyS.torch.muygps_layer, 54

87

MuyGPyS, Release 0.6.6

88 Python Module Index

INDEX

Symbols
__call__() (MuyGPyS.gp.kernels.kernel_fn.KernelFn

method), 11

A
apply_new_noise() (MuyG-

PyS.gp.multivariate_muygps.MultivariateMuyGPS
method), 17

apply_new_noise() (MuyGPyS.gp.muygps.MuyGPS
method), 13

B
batch_features_tensor() (in module MuyG-

PyS.gp.tensors), 7

C
classify_any() (in module MuyG-

PyS.examples.classify), 40
classify_two_class_uq() (in module MuyG-

PyS.examples.two_class_classify_uq), 46
cross_entropy_fn() (in module MuyG-

PyS.optimize.loss), 23
crosswise_tensor() (in module MuyG-

PyS.gp.tensors), 7

D
do_classify() (in module MuyG-

PyS.examples.classify), 40
do_classify_uq() (in module MuyG-

PyS.examples.two_class_classify_uq), 46
do_fast_posterior_mean() (in module MuyG-

PyS.examples.fast_posterior_mean), 36
do_regress() (in module MuyGPyS.examples.regress),

30
do_uq() (in module MuyG-

PyS.examples.two_class_classify_uq), 48

F
fast_coefficients() (MuyG-

PyS.gp.multivariate_muygps.MultivariateMuyGPS
method), 17

fast_coefficients() (MuyGPyS.gp.muygps.MuyGPS
method), 13

fast_posterior_mean() (MuyG-
PyS.gp.multivariate_muygps.MultivariateMuyGPS
method), 17

fast_posterior_mean() (MuyG-
PyS.gp.muygps.MuyGPS method), 13

fast_posterior_mean_any() (in module MuyG-
PyS.examples.fast_posterior_mean), 38

fixed() (MuyGPyS.gp.multivariate_muygps.MultivariateMuyGPS
method), 18

fixed() (MuyGPyS.gp.muygps.MuyGPS method), 14
forward() (MuyGPyS.torch.muygps_layer.MuyGPs_layer

method), 55
full_filtered_batch() (in module MuyG-

PyS.optimize.batch), 19

G
get_balanced_batch() (in module MuyG-

PyS.optimize.batch), 20
get_batch_nns() (MuyGPyS.neighbors.NN_Wrapper

method), 4
get_loss_func() (in module MuyGPyS.optimize.loss),

24
get_nns() (MuyGPyS.neighbors.NN_Wrapper method),

4
get_opt_mean_fn() (MuyGPyS.gp.muygps.MuyGPS

method), 14
get_opt_params() (MuyG-

PyS.gp.kernels.kernel_fn.KernelFn method),
11

get_opt_params() (MuyGPyS.gp.muygps.MuyGPS
method), 14

get_opt_var_fn() (MuyGPyS.gp.muygps.MuyGPS
method), 15

K
KernelFn (class in MuyGPyS.gp.kernels.kernel_fn), 11

L
lool_fn() (in module MuyGPyS.optimize.loss), 24

89

MuyGPyS, Release 0.6.6

lool_fn_unscaled() (in module MuyG-
PyS.optimize.loss), 24

looph_fn() (in module MuyGPyS.optimize.loss), 25

M
make_classifier() (in module MuyG-

PyS.examples.classify), 42
make_fast_multivariate_regressor() (in module

MuyGPyS.examples.fast_posterior_mean), 39
make_fast_predict_tensors() (in module MuyG-

PyS.gp.tensors), 7
make_fast_regressor() (in module MuyG-

PyS.examples.fast_posterior_mean), 39
make_heteroscedastic_tensor() (in module MuyG-

PyS.gp.tensors), 8
make_loo_crossval_fn() (in module MuyG-

PyS.optimize.objective), 27
make_masks() (in module MuyG-

PyS.examples.two_class_classify_uq), 49
make_multivariate_classifier() (in module

MuyGPyS.examples.classify), 44
make_multivariate_regressor() (in module MuyG-

PyS.examples.regress), 32
make_noise_tensor() (in module MuyG-

PyS.gp.tensors), 8
make_obj_fn() (in module MuyG-

PyS.optimize.objective), 27
make_predict_tensors() (in module MuyG-

PyS.gp.tensors), 9
make_regressor() (in module MuyG-

PyS.examples.regress), 34
make_train_tensors() (in module MuyG-

PyS.gp.tensors), 9
matern (in module MuyGPyS.gp.kernels), 12
mmuygps_analytic_sigma_sq_optim() (in module

MuyGPyS.optimize.sigma_sq), 28
mmuygps_sigma_sq_optim() (in module MuyG-

PyS.optimize.sigma_sq), 28
module

MuyGPyS.examples.classify, 40
MuyGPyS.examples.fast_posterior_mean, 36
MuyGPyS.examples.muygps_torch, 50
MuyGPyS.examples.regress, 30
MuyGPyS.examples.two_class_classify_uq,

45
MuyGPyS.gp.distortion, 5
MuyGPyS.gp.kernels.kernel_fn, 10
MuyGPyS.gp.tensors, 5
MuyGPyS.neighbors, 3
MuyGPyS.optimize.batch, 19
MuyGPyS.optimize.chassis, 22
MuyGPyS.optimize.loss, 23
MuyGPyS.optimize.objective, 27
MuyGPyS.optimize.sigma_sq, 28

MuyGPyS.torch.muygps_layer, 54
mse_fn() (in module MuyGPyS.optimize.loss), 25
MultivariateMuyGPS (class in MuyG-

PyS.gp.multivariate_muygps), 16
MuyGPS (class in MuyGPyS.gp.muygps), 12
muygps_analytic_sigma_sq_optim() (in module

MuyGPyS.optimize.sigma_sq), 29
MuyGPs_layer (class in MuyGPyS.torch.muygps_layer),

54
muygps_sigma_sq_optim() (in module MuyG-

PyS.optimize.sigma_sq), 29
MuyGPyS.examples.classify

module, 40
MuyGPyS.examples.fast_posterior_mean

module, 36
MuyGPyS.examples.muygps_torch

module, 50
MuyGPyS.examples.regress

module, 30
MuyGPyS.examples.two_class_classify_uq

module, 45
MuyGPyS.gp.distortion

module, 5
MuyGPyS.gp.kernels.kernel_fn

module, 10
MuyGPyS.gp.tensors

module, 5
MuyGPyS.neighbors

module, 3
MuyGPyS.optimize.batch

module, 19
MuyGPyS.optimize.chassis

module, 22
MuyGPyS.optimize.loss

module, 23
MuyGPyS.optimize.objective

module, 27
MuyGPyS.optimize.sigma_sq

module, 28
MuyGPyS.torch.muygps_layer

module, 54

N
NN_Wrapper (class in MuyGPyS.neighbors), 3

O
optimize_from_tensors() (in module MuyG-

PyS.optimize.chassis), 22

P
pairwise_tensor() (in module MuyGPyS.gp.tensors),

10

90 Index

MuyGPyS, Release 0.6.6

posterior_mean() (MuyG-
PyS.gp.multivariate_muygps.MultivariateMuyGPS
method), 18

posterior_mean() (MuyGPyS.gp.muygps.MuyGPS
method), 15

posterior_variance() (MuyG-
PyS.gp.multivariate_muygps.MultivariateMuyGPS
method), 19

posterior_variance() (MuyG-
PyS.gp.muygps.MuyGPS method), 15

predict_model() (in module MuyG-
PyS.examples.muygps_torch), 50

predict_multiple_model() (in module MuyG-
PyS.examples.muygps_torch), 51

predict_single_model() (in module MuyG-
PyS.examples.muygps_torch), 51

pseudo_huber_fn() (in module MuyG-
PyS.optimize.loss), 26

R
rbf (in module MuyGPyS.gp.kernels), 12
regress_any() (in module MuyG-

PyS.examples.regress), 36

S
sample_balanced_batch() (in module MuyG-

PyS.optimize.batch), 20
sample_batch() (in module MuyGPyS.optimize.batch),

21
set_eps() (MuyGPyS.gp.muygps.MuyGPS method), 16
set_params() (MuyG-

PyS.gp.kernels.kernel_fn.KernelFn method),
11

T
train_deep_kernel_muygps() (in module MuyG-

PyS.examples.muygps_torch), 52
train_two_class_interval() (in module MuyG-

PyS.examples.two_class_classify_uq), 49

U
update_nearest_neighbors() (in module MuyG-

PyS.examples.muygps_torch), 53

Index 91

	Citation
	neighbors
	gp
	distortion
	tensors
	kernels
	MuyGPS
	MultivariateMuyGPS

	optimize
	batch
	chassis
	loss
	objective
	sigma_sq

	examples
	regress
	fast_posterior_mean
	classify
	two-class classify with uq
	muygps_torch

	torch
	muygps_layer

	Univariate Regression Tutorial
	Sampling a Curve from a Conventional GP
	Constructing Nearest Neighbor Lookups
	Sampling Batches of Data
	Setting and Optimizing Hyperparameters
	Inference

	Deep Kernels with MuyGPs in PyTorch Tutorial
	Training a Deep Kernel MuyGPs Model
	Training a Deep Kernel MuyGPs Model Using Our Example API Function

	Fast Posterior Mean Tutorial
	Fast Prediction
	Regular Prediction
	Timing Experiment
	Results

	References

	Indices and tables
	Bibliography
	Python Module Index
	Index

